AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 1: Course Overview;
Matrix Multiplication

Xiangmin Jiao
Stony Brook University
Outline

1 Course Overview

2 The Language of Matrix Computations (MC §1.1)
Course Description

- What is numerical linear algebra?
 - Solving linear algebra problems using efficient algorithms on computers

- Required textbooks
Prerequisite

- Prerequisite/Co-requisite:
 - AMS 510 (linear algebra portion) or equivalent undergraduate-level linear algebra course. Familiarity with following concepts is assumed: Vector spaces, Gaussian elimination, Gram-Schmidt orthogonalization, and eigenvalues/eigenvectors
 - AMS 595 (co-requisite for students without programming experience)
 - This MUST NOT be your first course in linear algebra, or you will get lost

- To review fundamental concepts of linear algebra, see textbook such as
Why Learn Numerical Linear Algebra?

- Numerical linear algebra is foundation of scientific computations
- Many problems ultimately reduce to linear algebra concepts or algorithms, either analytical or computational
- Examples: Finite-element analysis, data fitting, PageRank (Google)

Focus of this course: Fundamental concepts, efficiency and stability of algorithms, and programming
Course Outline

- Basic linear algebra concepts and algorithms (1.5 weeks)
- Gaussian elimination and its variants (2 weeks)
- Sensitivity and stability (1.5 weeks)
- Linear least squares problem (1.5 weeks)
- Eigenvalues, eigenvectors, and SVD (4 weeks)
- Iterative methods for linear systems (2 weeks)

Course webpage:
http://www.ams.sunysb.edu/~jiao/teaching/ams526_fall15

Note: Course schedule online is tentative and is subject to change.
Course Policy

- Assignments (written or programming)
 - Assignments are due in class one to two weeks after assigned
 - You can discuss course materials and homework problems with others, but you must write your answers completely independently
 - Do NOT copy solutions from any source. Do NOT share your solutions with others

- Exams and tests
 - All exams are closed-book
 - However, one-page cheat sheet is allowed

- Grading
 - Assignments: 30%
 - Two midterm exams: 40%
 - Final exam: 30%
Outline

1. Course Overview

2. The Language of Matrix Computations (MC §1.1)
Matrices and Vectors

- Denote vector space of all m-by-n real matrices by $\mathbb{R}^{m \times n}$.

\[
A \in \mathbb{R}^{m \times n} \iff A = (a_{ij}) = \begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix}
\]

- Denote vector space of all real n-vectors by \mathbb{R}^n, or $\mathbb{R}^{n \times 1}$

\[
x \in \mathbb{R}^n \iff x = \begin{bmatrix}x_1 \\
x_2 \\
\vdots \\
x_n\end{bmatrix}
\]

- Transposition ($\mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$): $C = A^T \Rightarrow c_{ij} = a_{ji}$

- Row vectors are transpose of column vectors and are in $\mathbb{R}^{1 \times n}$
Matrix Operations

● **Addition and subtraction** \((\mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n})\):

 \[C = A \pm B \Rightarrow c_{ij} = a_{ij} \pm b_{ij} \]

● **Scalar-matrix multiplication or scaling** \((\mathbb{R} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n})\):

 \[C = \alpha A \Rightarrow c_{ij} = \alpha a_{ij} \]

● **Matrix-matrix multiplication/product** \((\mathbb{R}^{m \times p} \times \mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{m \times n})\):

 \[C = A B \Rightarrow c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} \text{ (denoted by } A \ast B \text{ in MATLAB)} \]

Each operation also applies to vectors. In particular,

- **Inner product** is row vector times column vector, i.e., \(c = x^T y \)
 (it is called **dot product** in vector calculus and denoted as \(x \cdot y \))
- **Outer product** is column vector times row vector, i.e., \(C = xy^T \)
 (it is a special case of Kronecker product and denoted as \(x \otimes y \))

● **Elementwise multiplication and division** \((\mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n})\)

 \[C = A. \ast B \Rightarrow c_{ij} = a_{ij} b_{ij} \]

 \[C = A. / B \Rightarrow c_{ij} = a_{ij} / b_{ij}, \text{ where } b_{ij} \neq 0 \]

● **Matrix inversion** \((A^{-1})\) and **division** \((A/B \text{ and } A \backslash B)\) to be defined later
Notation of Matrices and Vectors

- **Matrix notation**
 - Capital letters (e.g., A, B, Δ, etc.) for matrices
 - Corresponding lower case with subscript ij (e.g., a_{ij}, b_{ij}, δ_{ij}) for (i,j) entry; sometimes with notation $[A]_{ij}$ or $A(i,j)$

- **Vector notation**
 - Lowercase letters (e.g., x, y, etc.) for vectors
 - Corresponding lower case with subscript i for ith entry (e.g., x_i, y_i)

- Lower-case letters for scalars (e.g., c, s, α, β, etc.)
- Some suggest using boldface lowercase (e.g., x) for vectors, regular lowercase (e.g. c) for scalars, and boldface uppercase for matrices
- A matrix is a collection of column vectors or row vectors

$$A \in \mathbb{R}^{m \times n} \iff A = [c_1 | c_2 | \ldots | c_n], \quad c_k \in \mathbb{R}^m$$

$$A \in \mathbb{R}^{m \times n} \iff A = \begin{bmatrix} r_1^T \\ \vdots \\ r_m^T \end{bmatrix}, \quad r_k \in \mathbb{R}^n$$
Complex Matrices

- Occasionally, complex matrices are involved
- Vector space of m-by-n complex matrices is designated by $\mathbb{C}^{m \times n}$
 - Scaling, addition, multiplication of complex matrices correspond exactly to real case
 - If $A = B + iC \in \mathbb{C}^{m \times n}$, then $\text{Re}(A) = B$, $\text{Im}(A) = C$, and conjugate of A is $\bar{A} = (\bar{a}_{ij})$
 - Conjugate transpose is defined as $A^H = B^T - iC^T$, or $G = A^H \Rightarrow g_{ij} = \bar{a}_{ji}$
 (also called adjoint, and denoted by A^*; $(AB)^* = B^* A^*$)
- Vector space of complex n-vectors is designated by \mathbb{C}^n
 - Inner product of complex n-vectors x and y is $s = x^H y$
 - Outer product of complex n-vectors x and y is $S = xy^H$
- We will primarily focus on real matrices
Matrix-Vector Product

- Matrix-vector product $b = Ax$ is special case of matrix-matrix product
 \[b_i = \sum_{j=1}^{n} a_{ij}x_j \]

- For $A \in \mathbb{R}^{m \times n}$, Ax is a mapping $x \mapsto Ax$ from \mathbb{R}^n to \mathbb{R}^m
- This map is linear, which means that for any $x, y \in \mathbb{R}^n$ and any $\alpha \in \mathbb{R}$
 \[A(x + y) = Ax + Ay \]
 \[A(\alpha x) = \alpha Ax \]
Linear Combination

- Let a_j denote jth column of matrix A
 - Alternative notation is colon notation: $A(:,j)$ or $a_{:,j}$
 - Use $A(i,:)$ or $a_{i,:}$ to denote ith row of A

- b is a *linear combination* of column vectors of A, i.e.,

$$b = Ax = \sum_{j=1}^{n} x_j a_j = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1m} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

- In summary, two different views of matrix-vector products:
 1. Scalar operations: $b_i = \sum_{j=1}^{n} a_{ij} x_j$: A acts on x to produce b
 2. Vector operations: $b = \sum_{j=1}^{n} x_j a_j$: x acts on A to produce b
Matrix-Matrix Multiplication

- Computes $C = AB$, where $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$, and $C \in \mathbb{R}^{m \times n}$
- Element-wise, each entry of C is

 \[
 c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}
 \]

- Column-wise, each column of C is

 \[
 c_j = Ab_j = \sum_{k=1}^{r} b_{kj} a_k;
 \]

 in other words, jth column of C is A times jth column of B