AMS526: Numerical Analysis I
(Numerical Linear Algebra)

Lecture 10: QR Factorization; Gram-Schmidt Process; Householder Reflectors

Xiangmin Jiao

Stony Brook University
Outline

1. Review of Midterm #1
2. QR Factorization (NLA§7)
3. Modified Gram-Schmidt Orthogonalization (NLA§8)
Midterm #1

- Wednesday, Sept. 30th, 2015 in classroom
- It will cover material up to Cholesky factorization
- It is a closed-book exam
- You can bring a single-sided, one-page, letter-size cheat sheet, which you must prepare by yourself
Fundamental Concepts

- Norms, orthogonality, conditioning, stability
- Conditioning of problems
- Stability and backward stability of algorithms
- Efficiency of algorithms, operation counts, block-matrix notation
- Singular value decomposition, properties, and relationship with eigenvalue problems
- Orthogonal projection matrices, orthogonal matrices
Algorithms

- Matrix multiplication
- Triangular systems
- Gaussian elimination with/without pivoting
- Cholesky factorization and LDL^T factorization
- Understand when they work, how they work, why they work, and how well they work
Outline

1 Review of Midterm #1

2 QR Factorization (NLA§7)

3 Modified Gram-Schmidt Orthogonalization (NLA§8)
Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m \times n}$ ($m \geq n$) has full rank, how to solve the linear system?
Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m\times n}$ ($m \geq n$) has full rank, how to solve the linear system?

1. One approach is to solve normal equation $A^T Ax = A^T b$ directly using Cholesky factorization. It is unstable, but is very efficient if $m \gg n$ ($mn^2 + \frac{1}{3}n^3$).

2. Another possible solution is to use SVD:

$$A = U\Sigma V^T,$$

so $x = V\Sigma^{-1}U^T b$.

It is stable, but is inefficient.

A more robust approach is to use QR factorization, which decomposes A into product of two simple matrices Q and R, where columns of Q are orthonormal and R is upper triangular.
Two Different Versions of QR

There are two versions of QR

- Full QR factorization: \(A \in \mathbb{R}^{m \times n} \) \((m \geq n)\)
 \[A = QR \]
 where \(Q \in \mathbb{R}^{m \times m} \) is orthogonal and \(R \in \mathbb{R}^{m \times n} \) is upper triangular

- Reduced (Thin) QR factorization: \(A \in \mathbb{R}^{m \times n} \) \((m \geq n)\)
 \[A = \hat{Q}\hat{R} \]
 where \(Q \in \mathbb{R}^{m \times n} \) contains orthonormal vectors and \(R \in \mathbb{R}^{n \times n} \) is upper triangular

What space do \(\{q_1, q_2, \cdots, q_j\}, j \leq n \) span?

Answer: For full rank \(A \), first \(j \) column vectors of \(A \), i.e.,

\[\langle q_1, q_2, \ldots, q_j \rangle = \langle a_1, a_2, \ldots, a_j \rangle \]
Two Different Versions of QR

There are two versions of QR

- **Full QR factorization:** $A \in \mathbb{R}^{m \times n} \ (m \geq n)$

 $$A = QR$$

 where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular

- **Reduced (Thin) QR factorization:** $A \in \mathbb{R}^{m \times n} \ (m \geq n)$

 $$A = \hat{Q} \hat{R}$$

 where $Q \in \mathbb{R}^{m \times n}$ contains orthonormal vectors and $R \in \mathbb{R}^{n \times n}$ is upper triangular

- **What space do** $\{q_1, q_2, \ldots, q_j\}$, $j \leq n$ **span?**

 - Answer: For full rank A, first j column vectors of A, i.e.,

 $$\langle q_1, q_2, \ldots, q_j \rangle = \langle a_1, a_2, \ldots, a_j \rangle.$$
Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
 - Basic idea:
 - Take first column a_1 and normalize it to obtain vector q_1;
 - Take second column a_2, subtract its orthogonal projection to q_1, and normalize to obtain q_2;
 - ...
 - Take jth column of a_j, subtract its orthogonal projection to q_1, \ldots, q_{j-1}, and normalize to obtain q_j;

 $$v_j = a_j - \sum_{i=1}^{j-1} q_i^T a_j q_i, \quad q_j = v_j / \|v_j\|.$$

- This idea is called *Gram-Schmidt orthogonalization*.
Gram-Schmidt Projections

- Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors
 \[q_j = \frac{P_j a_j}{\|P_j a_j\|} \]
 where
 \[P_j = I - \hat{Q}_{j-1} \hat{Q}_{j-1}^T \] with \(\hat{Q}_{j-1} = \begin{bmatrix} q_1 & q_2 & \cdots & q_{j-1} \end{bmatrix} \)

- \(P_j \) projects orthogonally onto space orthogonal to \(\langle q_1, q_2, \ldots, q_{j-1} \rangle \)
 and rank of \(P_j \) is \(m - (j - 1) \)
Existence of QR

Theorem

Every \(A \in \mathbb{R}^{m \times n} \ (m \geq n) \) has full QR factorization, hence also a reduced QR factorization.
Existence of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ ($m \geq n$) has full QR factorization, hence also a reduced QR factorization.

Key idea of proof: If A has full rank, Gram-Schmidt algorithm provides a proof itself for having reduced QR. If A does not have full rank, at some step $v_j = 0$. We can set q_j to be a vector orthogonal to q_i, $i < j$. To construct full QR from reduced QR, just continue Gram-Schmidt an additional $m - n$ steps.
Uniqueness of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ ($m \geq n$) of full rank has a unique reduced QR factorization $A = \hat{Q}\hat{R}$ with $r_{jj} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{jj} are determined, then r_{ij} and q_j are determined.
Uniqueness of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \geq n)$ of full rank has a unique reduced QR factorization $A = \hat{Q}\hat{R}$ with $r_{jj} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{jj} are determined, then r_{ij} and q_{j} are determined.

Question: Why do we require $r_{jj} > 0$?
Uniqueness of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ ($m \geq n$) of full rank has a unique reduced QR factorization $A = \hat{Q}\hat{R}$ with $r_{jj} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{jj} are determined, then r_{ij} and q_j are determined.

Question: Why do we require $r_{jj} > 0$?

Question: Is full QR factorization unique?
Uniqueness of QR

Theorem

Every \(A \in \mathbb{R}^{m \times n} \) (\(m \geq n \)) of full rank has a unique reduced QR factorization \(A = \hat{Q}\hat{R} \) with \(r_{jj} > 0 \).

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of \(r_{jj} \) are determined, then \(r_{ij} \) and \(q_j \) are determined.

Question: Why do we require \(r_{jj} > 0 \)?

Question: Is full QR factorization unique?

Question: What if \(A \) does not have full rank?
Outline

1. Review of Midterm #1

2. QR Factorization (NLA§7)

3. Modified Gram-Schmidt Orthogonalization (NLA§8)
Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method

\[
\text{for } j = 1 : n \\
\quad v_j = a_j \\
\text{for } i = 1 : j - 1 \\
\quad r_{ij} = q_i^T a_j \\
\quad v_j = v_j - r_{ij} q_i \\
\quad r_{jj} = \| v_j \|_2 \\
\quad q_j = v_j / r_{jj}
\]

- Classical Gram-Schmidt (CGS) is **unstable**, which means that its solution is sensitive to perturbation.
Alternative View of Gram-Schmidt Projection

- Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

\[q_j = \frac{P_j a_j}{\|P_j a_j\|}, \text{ where } P_j = I - \hat{Q}_{j-1} \hat{Q}_{j-1}^T, \hat{Q}_{j-1} = [q_1|q_2|\cdots|q_{j-1}] \]

- We may view \(P_j \) as product of a sequence of projections

\[P_j = P_{\perp q_{j-1}} P_{\perp q_{j-2}} \cdots P_{\perp q_1} \]

where \(P_{\perp q} = I - qq^T \)

- Instead of computing \(v_j = P_j a_i \), one could compute

\[v_j = P_{\perp q_{j-1}} P_{\perp q_{j-2}} \cdots P_{\perp q_1} a_j \] instead, resulting in modified Gram-Schmidt algorithm
Modified Gram-Schmidt Algorithm

Classical Gram-Schmidt method

\[
\text{for } j = 1 : n \\
\quad v_j = a_j \\
\quad \text{for } i = 1 : j - 1 \\
\quad \quad r_{ij} = q_i^T a_j \\
\quad \quad v_j = v_j - r_{ij} q_i \\
\quad r_{jj} = \|v_j\|_2 \\
\quad q_j = v_j / r_{jj}
\]

Modified Gram-Schmidt method

\[
\text{for } j = 1 : n \\
\quad v_j = a_j \\
\quad \text{for } i = 1 : n \\
\quad \quad r_{ii} = \|v_i\|_2 \\
\quad \quad q_i = v_i / r_{ii} \\
\quad \text{for } j = i + 1 : n \\
\quad \quad r_{ij} = q_i^T v_j \\
\quad \quad v_j = v_j - r_{ij} q_i
\]

Key difference between CGS and MGS is how \(r_{ij}\) is computed.
CGS above is column-oriented (in the sense that \(R\) is computed column by column) and MGS above is row-oriented, but this is NOT the main difference between CGS and MGS. There are also column-oriented MGS and row-oriented CGS.

MGS is numerically more stable than CGS (less sensitive to round-off errors).
Modified Gram-Schmidt Algorithm

Classical Gram-Schmidt method

\[
\begin{align*}
\text{for } j = 1 : n \\
v_j &= a_j \\
\text{for } i = 1 : j - 1 \\
r_{ij} &= q_i^T a_j \\
v_j &= v_j - r_{ij} q_i \\
r_{jj} &= \| v_j \|_2 \\
q_j &= v_j / r_{jj}
\end{align*}
\]

Modified Gram-Schmidt method

\[
\begin{align*}
\text{for } j = 1 : n \\
v_j &= a_j \\
\text{for } i = 1 : n \\
r_{ii} &= \| v_i \|_2 \\
q_i &= v_i / r_{ii} \\
\text{for } j = i + 1 : n \\
r_{ij} &= q_i^T v_j \\
v_j &= v_j - r_{ij} q_i
\end{align*}
\]

- Key difference between CGS and MGS is how \(r_{ij} \) is computed.
- CGS above is column-oriented (in the sense that \(R \) is computed column by column) and MGS above is row-oriented, but this is NOT the main difference between CGS and MGS. There are also column-oriented MGS and row-oriented CGS.
- MGS is numerically more stable than CGS (less sensitive to round-off errors).
Example: CGS vs. MGS

Consider matrix

\[A = \begin{bmatrix}
1 & 1 & 1 \\
\varepsilon & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon
\end{bmatrix} \]

where \(\varepsilon \) is small such that \(1 + \varepsilon^2 = 1 \) with round-off error

For both CGS and MGS

\[v_1 \leftarrow (1, \varepsilon, 0, 0)^T, \quad r_{11} = \sqrt{1 + \varepsilon^2} \approx 1, \quad q_1 = v_1 / r_{11} = (1, \varepsilon, 0, 0)^T, \]

\[v_2 \leftarrow (1, 0, \varepsilon, 0)^T, \quad r_{12} = q_1^T a_2 (or \quad = q_1^T v_2) = 1 \]

\[v_2 \leftarrow v_2 - r_{12} q_1 = (0, -\varepsilon, \varepsilon, 0)^T, \]

\[r_{22} = \sqrt{2} \varepsilon, \quad q_2 = (0, -1, 1, 0) / \sqrt{2}, \]

\[v_3 \leftarrow (1, 0, 0, \varepsilon)^T, \quad r_{13} = q_1^T a_3 (or \quad = q_1^T v_3) = 1 \]

\[v_3 \leftarrow v_3 - r_{13} q_1 = (0, -\varepsilon, 0, \varepsilon)^T \]
Example: CGS vs. MGS Cont’d

- For CGS:
 \[r_{23} = q_2^T a_3 = 0, \quad v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\varepsilon, 0, \varepsilon)^T \]
 \[r_{33} = \sqrt{2\varepsilon}, \quad q_3 = v_3 / r_{33} = (0, -1, 0, 1)^T / \sqrt{2} \]
 - Note that \(q_2^T q_3 = (0, -1, 1, 0)(0, -1, 0, 1)^T / 2 = 1/2 \)

- For MGS:
 \[r_{23} = q_2^T v_3 = \varepsilon / \sqrt{2}, \quad v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\varepsilon / 2, -\varepsilon / 2, \varepsilon)^T \]
 \[r_{33} = \sqrt{6\varepsilon / 2}, \quad q_3 = v_3 / r_{33} = (0, -1, -1, 2)^T / \sqrt{6} \]
 - Note that \(q_2^T q_3 = (0, -1, 1, 0)(0, -1, -1, 2)^T / \sqrt{12} = 0 \)
Operation Count

- It is important to assess the **efficiency** of algorithms. But how?
 - We could implement different algorithms and do head-to-head comparison, but implementation details might affect true performance
 - We could estimate cost of all operations, but it is very tedious
 - Relatively simple and effective approach is to estimate amount of floating-point operations, or “flops”, and focus on asymptotic analysis as sizes of matrices approach infinity

- Count each operation $\pm, -, \times, /, \sqrt{}$ as one flop, and make no distinction of real and complex numbers

Theorem

CGS and MGS require $\sim 2mn^2$ flops to compute a QR factorization of an $m \times n$ matrix.