AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 12: Householder Triangularization; Givens Rotations; Least Squares Problems

Xiangmin Jiao
Stony Brook University
Outline

1. Householder Triangularization (NLA§10)

2. Givens Rotations

3. Linear Least Squares Problems (NLA§11)
Gram-Schmidt as Triangular Orthogonalization

- Every step of Gram-Schmidt can be viewed as multiplication with triangular matrix. For example, at first step:

\[
\begin{pmatrix}
1 & -\frac{r_{12}}{r_{11}} & -\frac{r_{13}}{r_{11}} & \cdots \\
\frac{1}{r_{11}} & 1 & 1 & \cdots \\
\frac{1}{r_{11}} & \frac{1}{r_{11}} & 1 & \cdots \\
\frac{1}{r_{11}} & \frac{1}{r_{11}} & \frac{1}{r_{11}} & \cdots
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_n
\end{pmatrix}
= \begin{pmatrix}
q_1 \\
q_2 \\
\vdots \\
q_n
\end{pmatrix},
\]

- Gram-Schmidt therefore multiplies triangular matrices to orthogonalize column vectors, and in turns can be viewed as \textit{triangular orthogonalization}

\[
AR_1R_2\cdots R_n = \hat{Q}
\]

where R_i is triangular matrix

- A “dual” approach would be \textit{orthogonal triangularization}, i.e., multiply A by orthogonal matrices to make it triangular matrix
Householder Triangularization

- Method introduced by Alston Scott Householder in 1958
- It multiplies orthogonal matrices to make column triangular, e.g.

\[
\begin{bmatrix}
\times & \times & \times \\
\end{bmatrix}
\quad Q_1
\begin{bmatrix}
\times & \times & \times \\
0 & \times & \times \\
\end{bmatrix}
\quad Q_2
\begin{bmatrix}
\times & \times & \times \\
\times & \times \\
0 & \times \\
0 & \times \\
0 & \times \\
\end{bmatrix}
\quad Q_3
\begin{bmatrix}
\times & \times & \times \\
\times & \times \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

- After \(n \) steps, we get a product of orthogonal matrices

\[
Q_n \cdots Q_2 Q_1 A = R
\]

and in turn we get full QR factorization \(A = QR \)

- \(Q_k \) introduces zeros below diagonal of \(k \)th column while preserving zeros below diagonal in preceding columns
- The key question is how to find \(Q_k \)
Householder Reflectors

- First, consider Q_1: $Q_1 a_1 = \|a_1\| e_1$, where $e_1 = (1, 0, \ldots, 0)^T$. Why the length is $\|a_1\|$?
- Q_1 reflects a_1 across hyperplane H orthogonal to $v = \|a_1\| e_1 - a_1$, and therefore
 \[Q_1 = I - 2 \frac{vv^T}{v^Tv} \]
- More generally, $Q_k = \begin{bmatrix} I & 0 \\ 0 & F \end{bmatrix}$
 where I is $(k-1) \times (k-1)$ and F is $(m-k+1) \times (m-k+1)$ such that $Fx = \|x\|_2 e_1$, where x is $(a_{k,k}, a_{k,k+1}, \ldots, a_{k,m})^T$
- What is F? It has similar form as Q_1 with $v = \|x\| e_1 - x$.
Choice of Reflectors

- We could choose F such that $Fx = -\|x\|e_1$ instead of $Fx = \|x\|e_1$, or more generally, $Fx = ze_1$ with $|z| = 1$. This leads to an infinite number of possible QR factorizations of A if $z \in \mathbb{C}$.
- If we require $z \in \mathbb{R}$, we still have two choices.
- Numerically, it is undesirable for v^Tv to be close to zero for $v = z\|x\|e_1 - x$, and $\|v\|$ is larger if $z = -\text{sign}(x_1)$.
- Therefore, $v = -\text{sign}(x_1)\|x\|e_1 - x$. Since $I - 2\frac{vv^T}{v^Tv}$ is independent of sign, clear out the factor -1 and obtain $v = \text{sign}(x_1)\|x\|e_1 + x$.
- For completeness, if $x_1 = 0$, set z to 1 (instead of 0).
Householder Algorithm

<table>
<thead>
<tr>
<th>Householder QR Factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (k = 1) to (n)</td>
</tr>
<tr>
<td>(x = A_{k:m,k})</td>
</tr>
<tr>
<td>(v_k = \text{sign}(x_1)|x|e_1 + x)</td>
</tr>
<tr>
<td>(v_k = v_k/|v_k|)</td>
</tr>
<tr>
<td>(A_{k:m,k:n} = A_{k:m,k:n} - 2v_k(v_k^TA_{k:m,k:n}))</td>
</tr>
</tbody>
</table>

- Note that \(\text{sign}(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ -1 & \text{otherwise} \end{cases} \)
- Leave \(R \) in place of \(A \)
- Matrix \(Q \) is not formed explicitly but reflection vector \(v_k \) is stored
Householder Algorithm

Householder QR Factorization

for \(k = 1 \) to \(n \)

\[
\begin{aligned}
 x &= A_{k:m,k} \\
 v_k &= \text{sign}(x_1) \|x\| e_1 + x \\
 v_k &= v_k / \|v_k\| \\
 A_{k:m,k:n} &= A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n})
\end{aligned}
\]

- Note that \(\text{sign}(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ -1 & \text{otherwise} \end{cases} \)
- Leave \(R \) in place of \(A \)
- Matrix \(Q \) is not formed explicitly but reflection vector \(v_k \) is stored
- Question: Can \(A \) be reused to store both \(R \) and \(v_k \) completely?
Householder Algorithm

Householder QR Factorization

\[
\text{for } k = 1 \text{ to } n \\
\quad x = A_{k:m,k} \\
\quad v_k = \text{sign}(x_1) \|x\| e_1 + x \\
\quad v_k = v_k / \|v_k\| \\
\quad A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n})
\]

- Note that \(\text{sign}(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ -1 & \text{otherwise} \end{cases}\)
- Leave \(R\) in place of \(A\)
- Matrix \(Q\) is not formed explicitly but reflection vector \(v_k\) is stored
- Question: Can \(A\) be reused to store both \(R\) and \(v_k\) completely?
- Answer: We can use lower triangular portion of \(A\) to store all but one entry in each \(v_k\). So an additional array of size \(n\) is needed.
Householder Algorithm

Householder QR Factorization

\[
\text{for } k = 1 \text{ to } n \\
\begin{align*}
x &= A_{k:m,k} \\
v_k &= \text{sign}(x_1) \|x\| e_1 + x \\
v_k &= v_k / \|v_k\| \\
A_{k:m,k:n} &= A_{k:m,k:n} - 2v_k(v_k^T A_{k:m,k:n})
\end{align*}
\]

- Note that \(\text{sign}(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ -1 & \text{otherwise} \end{cases} \)
- Leave \(R \) in place of \(A \)
- Matrix \(Q \) is not formed explicitly but reflection vector \(v_k \) is stored
- Question: Can \(A \) be reused to store both \(R \) and \(v_k \) completely?
- Answer: We can use lower triangular portion of \(A \) to store all but one entry in each \(v_k \). So an additional array of size \(n \) is needed.
- Question: What happens if \(v_k \) is 0 in line 3 of the loop?
Applying or Forming Q

- Compute $Q^T b = Q_n \cdots Q_1 b$

```
Implicit calculation of $Q^T b$

for $k = 1$ to $n$
    $b_{k:m} = b_{k:m} - 2v_k(v_k^T b_{k:m})$
```
Applying or Forming Q

- Compute $Q^T b = Q_n \cdots Q_1 b$

 Implicit calculation of $Q^T b$

 \[
 \text{for } k = 1 \text{ to } n \\
 b_{k:m} = b_{k:m} - 2v_k(v_k^T b_{k:m})
 \]

- Compute $Qx = Q_1 Q_2 \cdots Q_n x$

 Implicit calculation of Qx

 \[
 \text{for } k = n \text{ downto } 1 \\
 x_{k:m} = x_{k:m} - 2v_k(v_k^T x_{k:m})
 \]

- Question: How to form Q and \hat{Q}, respectively?
Applying or Forming Q

- Compute $Q^T b = Q_n \cdots Q_1 b$

 Implicit calculation of $Q^T b$

 $\text{for } k = 1 \text{ to } n$

 $b_{k:m} = b_{k:m} - 2v_k(v_k^T b_{k:m})$

- Compute $Qx = Q_1 Q_2 \cdots Q_n x$

 Implicit calculation of Qx

 $\text{for } k = n \text{ down to } 1$

 $x_{k:m} = x_{k:m} - 2v_k(v_k^T x_{k:m})$

- Question: How to form Q and \hat{Q}, respectively?

- Answer: Apply $x = I_{m \times m}$ or first n columns of I, respectively
Operation Count

- Most work done at step \(A_{k:m,k:n} = A_{k:m,k:n} - 2v_k^T A_{k:m,k:n} \)
- Flops per iteration:
 - \(\sim 2(m - k)(n - k) \) for dot products \(v_k^T A_{k:m,k:n} \)
 - \(\sim (m - k)(n - k) \) for outer product \(2v_k(\cdots) \)
 - \(\sim (m - k)(n - k) \) for subtraction
 - \(\sim 4(m - k)(n - k) \) total
- Including outer loop, total flops is
 \[
 \sum_{k=1}^{n} 4(m - k)(n - k) = 4 \sum_{k=1}^{n} (mn - km - kn + k^2)
 \sim 4mn^2 - 4(m + n)n^2/2 + 4n^3/3
 = 2mn^2 - \frac{2}{3}n^3
 \]

If \(m \approx n \), it is more efficient than Gram-Schmidt method, but if \(m \gg n \), similar to Gram-Schmidt
Outline

1. Householder Triangularization (NLA§10)

2. Givens Rotations

3. Linear Least Squares Problems (NLA§11)
Givens Rotations

- Instead of using reflection, we can rotate \(x \) to obtain \(\|x\|e_1 \)

- A Givens rotation \(R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \) rotates \(x \in \mathbb{R}^2 \) counterclockwise by \(\theta \)

- Choose \(\theta \) to be angle between \((x_i, x_j)^T\) and \((1, 0)^T\), and we have

\[
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i \\ x_j \end{bmatrix} = \begin{bmatrix} \sqrt{x_i^2 + x_j^2} \\ 0 \end{bmatrix}
\]

where

\[
\cos \theta = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad \sin \theta = \frac{-x_j}{\sqrt{x_i^2 + x_j^2}}
\]
Givens QR

- Introduce zeros in column bottom-up, one zero at a time

\[
\begin{bmatrix}
\times & \times & \times \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times & \times \\
0 & \times & \times \\
\end{bmatrix}
\]

(4,5) \rightarrow \begin{bmatrix}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
\end{bmatrix}

(3,4)

- To zero \(a_{ij} \), left-multiply matrix \(F \) with \(F_{i:i+1,i:i+1} \) being rotation matrix and \(F_{kk} = 1 \) for \(k \neq i, i+1 \)

- Flop count of Givens QR is \(3mn^2 - n^3 \), which is about 50% more expensive than Householder triangularization
Adding a Row

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, and A has full rank.
- Let $\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix}$, where $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and z^T is a new row inserted.
- Obtain $\tilde{A} = \tilde{Q}\tilde{R}$ from $A = QR$ efficiently using Givens rotation:
 - Suppose $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R$.
 - Then $\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix} = \begin{bmatrix} 0 & Q_1 \\ 1 & 0^T \\ 0 & Q_2 \end{bmatrix} \begin{bmatrix} z^T \\ R \end{bmatrix}$.
 - Perform series of Givens rotation $\tilde{R} = U_n^T \ldots U_2^T U_1^T \begin{bmatrix} z^T \\ R \end{bmatrix}$, and then $\tilde{Q} = \begin{bmatrix} 0 & Q_1 \\ 1 & 0^T \\ 0 & Q_2 \end{bmatrix} U_1 U_2 \ldots U_n$.
 - Updating \tilde{R} costs $3n^2$ flops, and updating \tilde{Q} costs $6mn$ flops.
Adding a Column

- Suppose $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, and A has full rank.
- Let $\tilde{A} = \begin{bmatrix} A_1 & z & A_2 \end{bmatrix}$, where $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ and z is a new column.
- Obtain $\tilde{A} = \tilde{Q}\tilde{R}$ from $A = QR$ efficiently using Givens rotation:
 - Suppose $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix} = Q \begin{bmatrix} R_1 & R_2 \end{bmatrix}$.
 - Then $\tilde{A} = \begin{bmatrix} A_1 & z & A_2 \end{bmatrix} = Q \begin{bmatrix} R_1 & w & R_2 \end{bmatrix}$, where $w = Q^Tz$.
 - Perform series of Givens rotation $\tilde{R} = U_{k+1} \cdots U_n \begin{bmatrix} R_1 & w & R_2 \end{bmatrix}$, where U_n performs on rows n and $n-1$, U_{n-1} performs on rows $n-1$ and $n-2$, etc.
 - $\tilde{Q} = QU_n^T \cdots U_{k+1}^T$.
 - It takes $O(mn)$ time overall.
Outline

1. Householder Triangularization (NLA§10)
2. Givens Rotations
3. Linear Least Squares Problems (NLA§11)
Linear Least Squares Problems

- Overdetermined system of equations $Ax \approx b$, where A has more rows than columns and has full rank, in general has no solutions
- Example application: Polynomial least squares fitting
- In general, minimize the residual $r = b - Ax$
- In terms of 2-norm, we obtain linear least squares problem: Given $A \in \mathbb{R}^{m \times n}$, $m \geq n$, and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ such that $\|b - Ax\|_2$ is minimized
- If A has full rank, the minimizer x is the solution to the normal equation
 \[A^T Ax = A^T b \]
 or in terms of the pseudoinverse A^+,
 \[x = A^+ b, \quad \text{where } A^+ = (A^T A)^{-1} A^T \in \mathbb{R}^{n \times m} \]
Geometric Interpretation

- Ax is in range(A), and the point in range(A) closest to b is its orthogonal projection onto range(A)
- Residual r is then orthogonal to range(A), and hence $A^T r = A^T (b - Ax) = 0$
- Ax is orthogonal projection of b, where $x = A^+ b$, so $P = AA^+ = A(A^T A)^{-1} A^T$ is orthogonal projection (recall lecture 5)
Solution of Lease Squares Problems

- One approach is to solve normal equation $A^T A x = A^T b$ directly using Cholesky factorization
 - Is unstable, but is very efficient if $m \gg n \ (mn^2 + \frac{1}{3}n^3)$
- More robust approach is to use QR factorization $A = \hat{Q} \hat{R}$
 - b can be projected onto range(A) by $P = \hat{Q} \hat{Q}^T$, and therefore $\hat{Q} \hat{R} x = \hat{Q} \hat{Q}^T b$
 - Left-multiply by \hat{Q}^T and we get $\hat{R} x = \hat{Q}^T b$ (note $A^+ = \hat{R}^{-1} \hat{Q}^T$)

<table>
<thead>
<tr>
<th>Least squares via QR Factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute reduced QR factorization $A = \hat{Q} \hat{R}$</td>
</tr>
<tr>
<td>Compute vector $c = \hat{Q}^T b$</td>
</tr>
<tr>
<td>Solve upper-triangular system $\hat{R} x = c$ for x</td>
</tr>
</tbody>
</table>

- Computation is dominated by QR factorization $(2mn^2 - \frac{2}{3}n^3)$
- Question: If Householder QR is used, how to compute $\hat{Q}^T b$?
Solution of Least Squares Problems

- One approach is to solve normal equation $A^T A x = A^T b$ directly using Cholesky factorization
 - Is unstable, but is very efficient if $m \gg n \left(m n^2 + \frac{1}{3} n^3 \right)$

- More robust approach is to use QR factorization $A = \hat{Q} \hat{R}$
 - b can be projected onto range(A) by $P = \hat{Q} \hat{Q}^T$, and therefore $\hat{Q} \hat{R} x = \hat{Q} \hat{Q}^T b$
 - Left-multiply by \hat{Q}^T and we get $\hat{R} x = \hat{Q}^T b$ (note $A^+ = \hat{R}^{-1} \hat{Q}^T$)

Least squares via QR Factorization

Compute reduced QR factorization $A = \hat{Q} \hat{R}$
Compute vector $c = \hat{Q}^T b$
Solve upper-triangular system $\hat{R} x = c$ for x

- Computation is dominated by QR factorization $(2 mn^2 - \frac{2}{3} n^3)$
- Question: If Householder QR is used, how to compute $\hat{Q}^T b$?
- Answer: Compute $Q^T b$ (where Q is from full QR factorization) and then take first n entries of resulting $Q^T b$