AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 18: Review for Midterm #2;
Other Eigenvalue Algorithms

Xiangmin Jiao

SUNY Stony Brook
Outline

1. Review for Midterm #2

2. Other Eigenvalue Algorithms (NLA§30)
Algorithms

- QR factorization
 - Classical and modified Gram-Schmidt
 - QR factorization using Householder triangularization

- Solutions of linear least squares
 - Solution using Householder QR and other QR factorization
 - Alternative solutions: normal equation; SVD
Eigenvalue Problem

- **Eigenvalue problem** of \(m \times m \) matrix \(A \) is \(Ax = \lambda x \)
- **Characteristic polynomial** is \(\det(A - \lambda I) \)
- **Eigenvalue decomposition** of \(A \) is \(A = X\Lambda X^{-1} \) (does not always exist)
- **Geometric multiplicity** of \(\lambda \) is \(\dim(\text{null}(A - \lambda I)) \), and **algebraic multiplicity** of \(\lambda \) is its multiplicity as a root of \(p_A \), where algebraic multiplicity \(\geq \) geometric multiplicity
- **Similar** matrices have the same eigenvalues, and algebraic and geometric multiplicities
- **Schur factorization** \(A = QTQ^* \) uses unitary similarity transformations
Eigenvalue Algorithms

- Underlying concepts: power iterations, Rayleigh quotient, inverse iterations, convergence rate
- \textit{Schur factorization} is typically done in two steps
 - Reduction to Hessenberg form for non-Hermitian matrices or reduction to tridiagonal form for Hermitian matrices by unitary similarity transformation
 - Finding eigenvalues of Hessenberg or \textbf{tridiagonal} form
- Finding eigenvalue of tridiagonal forms
 - QR algorithm with shifts, and their interpretations as (inverse) simultaneous iterations
Outline

1. Review for Midterm #2

2. Other Eigenvalue Algorithms (NLA§30)
Three Alternative Algorithms

- Jacobi algorithm: earliest known method
- Bisection method: standard way for finding few eigenvalues
- Divide-and-conquer: faster than QR and amenable to parallelization
The Jacobi Algorithm

- Diagonalize 2×2 real symmetric matrix by *Jacobi rotation*

 $$J^T \begin{bmatrix} a & d \\ d & b \end{bmatrix} J = \begin{bmatrix} \neq 0 & 0 \\ 0 & \neq 0 \end{bmatrix}$$

 where $J = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, and $\tan(2\theta) = 2d/(b - a)$

- What are its similarity and differences with Givens rotation?
- Iteratively apply transformation to two rows and two corresponding columns of $A \in \mathbb{R}^{m \times m}$
- Need not tridiagonalize first, but loop over all pairs of rows and columns by choosing greedily or cyclically
- Magnitude of nonzeros shrink steadily, converging quadratic
- In each iteration, $O(m^2)$ Jacobi rotation, $O(m)$ operations per rotation, leading to $O(m^3 \log(\| \log \epsilon_{\text{machine}} \|))$ flops total
- Jacobi method is easy to parallelize (QR algorithm does not scale well), delivers better accuracy than QR algorithm, but far slower than QR algorithm
Method of Bisection

- Idea: Search the real line for roots of \(p(x) = \det(A - xl) \)
- Finding roots from coefficients is highly unstable, but computing \(p(x) \) from given \(x \) is stable (e.g., can be computed using Gaussian elimination with partial pivoting)
- Let \(A^{(i)} \) denote principal square submatrix of dimension \(i \) for irreducible matrix \(A \) (note: different from notation in QR algorithm)
- Key property: eigenvalues of \(A^{(1)}, \ldots, A^{(m)} \) strictly interlace

\[
\lambda_j^{(k+1)} < \lambda_j^{(k)} < \lambda_j^{(k+1)}
\]
Method of Bisection

- Interlacing property allows us to determine number of negative eigenvalues of \(A \), which is equal to number of sign changes in Sturm sequence

 \[1, \det(A^{(1)}), \det(A^{(2)}), \ldots, \det(A^{(m)}) \]

- Shift \(A \) to get number of eigenvalues in \((-\infty, b)\) and \((-\infty, a)\), and in turn \([a, b)\)

- Three-term recurrence for determinants for tridiagonal matrices

 \[\det(A^{(k)}) = a_{k,k} \det(A^{(k-1)}) - a_{k,k-1}^2 \det(A^{(k-2)}) \]

- With shift \(xl \) and \(p^{(k)}(x) = \det(A^{(k)} - xl) \):

 \[p^{(k)}(x) = (a_{k,k} - x) p^{(k-1)}(x) - a_{k,k-1}^2 p^{(k-2)}(x) \]

- Bisection algorithm can the locate eigenvalues in arbitrarily small intervals

- \(O(m|\log(\epsilon_{\text{machine}})|) \) flops per eigenvalue, always high relative accuracy
Notes on Bisection

- It is standard algorithm if one needs a few eigenvalues
- Key step of bisection is to determine the inertia (i.e., the numbers of positive, negative, and zero eigenvalues) of $A - \mu I$
- Sylvester’s Law of Inertia: inertia is invariant under congruence transformation SAS^T, where S is nonsingular (proved in 1852)
- Therefore, LDL^T may be used to determine inertia
Divide-and-Conquer Algorithm

- Split symmetric algorithm T into submatrices

$$T = \begin{bmatrix}
T_1 & \beta \\
\beta & T_2
\end{bmatrix} = \begin{bmatrix}
\hat{T}_1 & \\
& \hat{T}_2
\end{bmatrix} + \begin{bmatrix}
& \\
& \\
\beta & \\
\beta & \beta
\end{bmatrix}$$

- Sum of 2×2 block-diagonal matrix and rank-one correction
- Split T in equal sizes and compute eigenvalues of \hat{T}_1 and \hat{T}_2 recursively
- Solve nonlinear problem to get eigenvalues of T from those of \hat{T}_1 and \hat{T}_2
Divide-and-Conquer Algorithm

- Suppose diagonalization \(\hat{T}_1 = Q_1 D_1 Q_1^T \) and \(\hat{T}_2 = Q_2 D_2 Q_2^T \) have been computed. We then have

\[
T = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \left(\begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} + \beta z z^T \right) \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix}
\]

with \(z^T = (q_1^T, q_2^T) \), where \(q_1^T \) is last row of \(Q_1 \) and \(q_2^T \) is first row of \(Q_2 \).

- This is similarity transformation: Find eigenvalues of diagonal matrix plus rank-one correction.
Divide-and-Conquer Algorithm

- Eigenvalues of $D + ww^T$ are the roots of rational function

$$f(\lambda) = 1 + \sum_{j=1}^{m} \frac{w_j^2}{d_j - \lambda}$$
Divide-and-Conquer Algorithm

- Solve secular equation $f(\lambda) = 0$ with nonlinear solver
- $O(m)$ flops per root, $O(m^2)$ flops for all roots
- Total cost for divide-and-conquer algorithm is

 $$O \left(\sum_{k=1}^{\log m} 2^{k-1} \left(\frac{m}{2^{k-1}} \right)^2 \right) \approx O(m^2)$$

- For computing eigenvalues only, most of operations are spent in tridiagonal reduction, and constant in “Phase 2” is not important
- However, for computing eigenvectors, divide-and conquer reduces phase 2 to $4m^3/3$ flops compared to $6m^3$ for QR