AMS526: Numerical Analysis I
(Numerical Linear Algebra)
Lecture 25: More on Preconditioners;
Overview of Multigrid Methods

Xiangmin Jiao

SUNY Stony Brook
Outline

1. More on Preconditioners

2. Smoothing Effect of Stationary Iterative Methods

3. Multigrid Method
 - Motivation
 - Key Ideas of Multigrid
 - More Advanced Topics
Preconditioning

- Motivation: Convergence of iterative methods heavily depends on eigenvalues or singular values of equation
- Main idea of preconditioning is to introduce a nonsingular matrix M such that $M^{-1}A$ has better properties than A. Thereafter, solve

$$M^{-1}Ax = M^{-1}b,$$

which has the same solution as $Ax = b$

- Criteria of M
 - “Good” approximation of A, depending on iterative solvers
 - Ease of inversion

- Typically, a precondition M is good if $M^{-1}A$ is not too far from normal and its eigenvalues are clustered
Left, Right, and Hermitian Preconditioners

- Left preconditioner: Left multiply M^{-1} and solve $M^{-1}Ax = M^{-1}b$
- Right preconditioner: Right multiply M^{-1} and solve $AM^{-1}y = b$ with $x = M^{-1}y$
- However, if A is Hermitian, $M^{-1}A$ or AM^{-1} breaks symmetry
- How to resolve this problem?

Suppose M is Hermitian positive definite, with $M = CC^*$ for some C, then $Ax = b$ is equivalent to $\left[C^{-1}AC^{-*} \right] \left(C^*x \right) = C^{-1}b$, where $C^{-1}AC^{-*}$ is Hermitian positive definite, and it is similar to $C^{-*}C^{-1}A = M^{-1}A$ and has same eigenvalues as $M^{-1}A$.
Left, Right, and Hermitian Preconditioners

- Left preconditioner: Left multiply M^{-1} and solve $M^{-1}Ax = M^{-1}b$
- Right preconditioner: Right multiply M^{-1} and solve $AM^{-1}y = b$ with $x = M^{-1}y$
- However, if A is Hermitian, $M^{-1}A$ or AM^{-1} breaks symmetry
- How to resolve this problem?

- Suppose M is Hermitian positive definite, with $M = CC^*$ for some C, then $Ax = b$ is equivalent to

 $$\left[C^{-1}AC^{-*}\right] (C^*x) = C^{-1}b,$$

 where $C^{-1}AC^{-*}$ is Hermitian positive definite, and it is similar to $C^{-*}C^{-1}A = M^{-1}A$ and has same eigenvalues as $M^{-1}A$

- Example of $M = CC^*$ is Cholesky factorization $M = RR^*$, where R is upper triangular
Preconditioned Conjugate Gradient

- When preconditioning a symmetric matrix, use SPD matrix \(M \), and \(M = RR^T \)
- In practice, algorithm can be organized so that only \(M^{-1} \) (instead of \(R^{-1} \)) appears

Algorithm: Preconditioned Conjugate Gradient Method

\[
\begin{align*}
x_0 &= 0, \quad r_0 = b, \quad p_0 = M^{-1}r_0, \quad z_0 = p_0 \\
\text{for } n &= 1, 2, 3, \ldots \\
\alpha_n &= (r_{n-1}^T z_{n-1})/(p_{n-1}^T Ap_{n-1}) \quad \text{step length} \\
x_n &= x_{n-1} + \alpha_n p_{n-1} \quad \text{approximate solution} \\
r_n &= r_{n-1} - \alpha_n Ap_{n-1} \quad \text{residual} \\
z_n &= M^{-1}r_n \quad \text{preconditioning} \\
\beta_n &= (r_n^T z_n)/(r_{n-1}^T z_{n-1}) \quad \text{improvement this step} \\
p_n &= z_n + \beta_n p_{n-1} \quad \text{search direction}
\end{align*}
\]
Effective Preconditioners for CG

SSOR Preconditioner

- Simpler form: use matrix splitting of form $A = L + D + L^T$ and take

 $$M = (D + L)D^{-1}(D + L)^T$$

- More generally, introduce SSOR relaxation parameter ω, and take

 $$M = \frac{1}{2 - \omega} \left(\frac{1}{\omega} D + L \right) \left(\frac{1}{\omega} D \right)^{-1} \left(\frac{1}{\omega} D + L \right)^T.$$

 With optimal ω, $\text{cond}(M^{-1}A) = O(\sqrt{\text{cond}(A)})$, but determining optimal ω is impractical

Incomplete factorization

- If $A = LL^T$ were used as preconditioner, then $\text{cond}(M^{-1}A) = 1$, but impractical

- Instead, compute approximate factorization $A \approx \tilde{L}\tilde{L}^T$, which omit all fills or omit small fills and use $M = \tilde{L}\tilde{L}^T$ as preconditioner
Other Commonly Used Preconditioners

- **Jacobi preconditioning**: $M = \text{diag}(A)$. Very simple and cheap, might improve certain problems but usually insufficient.

- **Block-Jacobi preconditioning**: Let M be composed of block-diagonal instead of diagonal.

- **Multigrid (coarse-grid approximations)**: For a PDE discretized on a grid, a preconditioner can be formed by transferring the solution to a coarser grid, solving a smaller problem, then transferring back. This is sometimes the most efficient approach if applicable.
Outline

1. More on Preconditioners

2. Smoothing Effect of Stationary Iterative Methods

3. Multigrid Method
 - Motivation
 - Key Ideas of Multigrid
 - More Advanced Topics
Stationary Iterative Methods

- Stationary iterative methods can be interpreted as a fixed point iteration obtained by matrix splitting.
- Let $A = M - N$ and $r_k = b - Ax_k$ we can obtain

$$x_{k+1} = M^{-1}Nx_k + M^{-1}b$$ \hspace{1cm} (1)

$$x_{k+1} = x_k + M^{-1}r_k$$ \hspace{1cm} (2)

- Different choices of splitting lead to various schemes
Stationary Iterative Methods

- These iteration schemes work for a wide range of problems
- They can often be implemented without forming the matrix explicitly.
- However, they have slow convergence

Example

For 2D Poisson equation,
Spectral radius of Jacobi iteration matrix is \(\cos \left(\frac{\pi}{n} \right) \approx 1 - O \left(\frac{1}{n^2} \right) \).
Number of iterations required to achieve \(\epsilon \) is \(O(n^2 \ln \epsilon^{-1}) \).
After 5 Jacobi iterations on a Poisson equation, error decreases very slowly.
Smoothing Effect

- The reason behind this behavior is the smoothing property of stationary iterative methods.
- This property is one of the theoretical foundations of multigrid methods.
- To illustrate the idea we apply iterative methods to the homogeneous system with initial guess v_k

$$Au = 0$$

- v_k is chosen as $(v_k)_j = \sin \left(\frac{j k \pi}{n} \right), \; 1 \leq k \leq n - 1, \; 1 \leq j \leq n - 1$ (Fourier modes)
Smoothing Effect

- The modes in the lower half of the spectrum, with wavenumbers in the range $1 \leq k < \frac{n}{2}$ are called *low frequency* or smooth modes.
- The modes in the upper half of the spectrum, with $\frac{n}{2} \leq k \leq n - 1$ are called *high frequency* modes or *oscillatory* modes.

![Diagram of modes with wavenumbers k = 1, 3, 6]
Smoothing Effect

Weighted Jacobi applied on 1-D model problem with 64 points with initial guess \(v_1, v_3 \) and \(v_6 \)
Gauss Seidel applied on 1-D model problem with 64 points with initial guess v_1, v_3 and v_6
Smoothing Effect

- Oscillatory modes are eliminated quickly
- Smooth modes remain relatively unchanged
- Errors for the model problem can be decomposed using these Fourier modes
- After several iterations, high frequency components will disappear and the error becomes smooth
Smoothing Effect

If we project a smooth wave directly onto a coarser grid, it becomes more oscillatory.
Smoothing Effect

- What does it imply?
- If we can move the error to a coarser grid, iterations will be more effective!
- Even if the error does not become more oscillatory, relaxing on the coarse grid is simply cheaper
- We may consider using coarse grids
Outline

1. More on Preconditioners

2. Smoothing Effect of Stationary Iterative Methods

3. Multigrid Method
 - Motivation
 - Key Ideas of Multigrid
 - More Advanced Topics
We can solve problems on coarse grids to obtain better initial guesses:

- Relax $Au = f$ on a very coarse grid Ω^{8h} to obtain an initial guess for the next finer grid Ω^{4h}.
- Relax $Au = f$ on grid Ω^{4h} to obtain an initial guess for Ω^{2h}.
- Relax $Au = f$ on grid Ω^{2h} to obtain an initial guess for Ω^h.
- Relax $Au = f$ on Ω^h to obtain a final approximation to the solution.
Correction Scheme

- From our previous observations, error becomes smooth after relaxations.
- If we move the error to a coarser grid, it becomes oscillatory and iterations are effective.
- What problem should we be solving then?
- The residual equation \(Ae = f - Av = r \), where \(v \) is approximate solution of \(u \).
Correction Scheme

- Why residual equation?
- We want to relax the error directly since it becomes oscillatory on coarse level
- If we can solve the residual equation accurately then the real solution \(u \) can be obtained by \(u = v + e \).
- Relaxation on the original equation \(Au = f \) with arbitrary initial guess \(v \) is equivalent to relaxing on the residual equation \(Ae = r \) with specific initial guess \(e = 0 \).
Two-Grid Correction Scheme

The basic form of the multigrid method is defined as the following two-grid correction scheme [Briggs et al., Multigrid Tutorial]:

\[v^h \leftarrow MG(v^h, f^h) \]

1. **Presmoothing:** relax \(\mu_1 \) times on \(A^h u^h = f^h \) on \(\Omega^h \) with initial guess \(v^h \).

2. **Restriction:** compute the fine-grid residual \(r^h = f^h - A^h v^h \) and restrict it to the coarse grid by \(r^{2h} = R r^h \).

3. **Coarse Grid Solving:** either solve \(A^{2h} e^{2h} = r^{2h} \) or relax \(\mu_3 \) times with initial guess 0 on \(\Omega^{2h} \).

4. **Prolongation:** interpolate the coarse-grid error to the fine grid by \(e^h = Pe^{2h} \) and correct the fine-grid approximation by \(v^h \leftarrow v^h + e^h \).

5. **Postsmoothing:** Relax \(\mu_2 \) times on \(A^h u^h = f^h \) on \(\Omega^h \) with initial guess \(v^h \).
Presmoothing: relax μ_1 times on $A^h u^h = f^h$ on Ω^h with initial guess v^h.

- We apply μ_1 steps of iterations on the original linear system.
- This step is known as the presmoothing step.
- After iterations errors e^h will become smooth and it will appear oscillatory on Ω^{2h}.
- We then approximate the residual equation on Ω^{2h}.
Restriction

Restriction: compute the fine-grid residual $r^h = f^h - A^h v^h$ and restrict it to the coarse grid by $r^{2h} = R r^h$.

- We restrict the residual onto Ω^{2h}
- Restriction operator can be chosen as injection $v_j^{2h} = v_{2j}^h$ or full-weighting $v_j^{2h} = \frac{1}{4}(v_{2j-1}^h + 2v_{2j}^h + v_{2j+1}^h)$

Figure: Restriction by full weighting
Solving on coarse level

Coarse Grid Solving: either solve \(A^{2h} e^{2h} = r^{2h} \) or relax \(\mu_3 \) times with initial guess 0 on \(\Omega^{2h} \).

- We obtain \(A^{2h} \) by rediscretizing the PDE on \(\Omega^{2h} \)
- \(A^{2h} e^{2h} = r^{2h} \) is an approximation of \(A^h e^h = r^h \) on \(\Omega^{2h} \)
- Iterative methods are effective as \(e^{2h} \) becomes oscillatory
- Iterations are also cheaper as there are less grid points
Prolongation

Prolongation: interpolate the coarse-grid error to the fine grid by
\[e^h = P e^{2h} \] and correct the fine-grid approximation by
\[v^h \leftarrow v^h + e^h. \]

- After \(e^{2h} \) is obtained, we interpolate it back to \(\Omega^h \) and update error.
- Prolongation operator can be chosen as linear interpolation
 \[v_{2j}^h = v_j^{2h}, \quad v_{2j+1}^h = \frac{1}{2}(v_j^{2h} + v_{j+1}^{2h}) \]

![Figure: Prolongation by linear interpolation](image)
Postsmoothing

Postsmoothing: relax μ_2 times on $A^h u^h = f^h$ on Ω^h with initial guess v^h.

- We apply μ_2 steps of iterations on the original linear system
- This step is known as the postsmoothing step
- Errors will be further reduced
Two-Grid Correction Scheme

- Iteration on fine grid leaves smooth errors e^h and they appear to be oscillatory on coarse grid as e^{2h}.
- Iteration on coarse grid then solve e^{2h} effectively and e^{2h} will become a good approximation of e^h after interpolation.
- Finally with the correction step $v^h \leftarrow v^h + e^h$, we will obtain a solution very close to u.
- Errors which cannot be eliminated effectively by iterations are removed by coarse grid correction.
Toward Multigrids

- In our description, we assume e^{2h} on coarse level is solved accurately.
- Practically a few steps of iterations cannot guarantee sufficient accuracy of e^{2h}.
- We may apply two-grid idea recursively on subsequent levels.
- We can recursively solve problems on coarser levels and use them as initial guesses on fine levels.
V-cycle and Full Multigrid scheme

Figure: V-cycle and FMG scheme
Smooth errors are defined algebraically as $e_{k+1} \approx e_k$ which leads us to $Ae \approx 0$

Define interpolation operator P

Coarsening is performed by a greedy maximum independent set algorithm on weighted graph

Restriction is chosen as the transpose of interpolation and $A_{2h} = P^T A_h P$

Current AMG development focuses on improving coarsening strategy and interpolation formula
Numerical Results: Poisson Equation

- Poisson equation discretized using third-order generalized finite difference method. The resulting matrix is asymmetric
- Comparison of algebraic multigrid method, MATLAB’s built in direct solver and GMRES to problems of various sizes

<table>
<thead>
<tr>
<th>size</th>
<th>AMG ($TOL = 10^{-10}$)</th>
<th>Direct Solver</th>
<th>GMRES(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10 × 10</td>
<td>0.0081 seconds</td>
<td>0.0093 seconds</td>
<td>0.020 seconds</td>
</tr>
<tr>
<td>20 × 20 × 20</td>
<td>0.081 seconds</td>
<td>0.21 seconds</td>
<td>0.28 seconds</td>
</tr>
<tr>
<td>40 × 40 × 40</td>
<td>0.95 seconds</td>
<td>8.14 seconds</td>
<td>7.15 seconds</td>
</tr>
<tr>
<td>80 × 80 × 80</td>
<td>11.79 seconds</td>
<td>out of memory</td>
<td>470.88 seconds</td>
</tr>
</tbody>
</table>