The Touring Polygons Problem (TPP)
[Dror-Efrat-Lubiw-M]:

Given a sequence of k polygons in the plane, a start point s, and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t.
Related Problem: TSPN:

If the order to visit \(\{P_1, P_2, \ldots, P_k\} \) is not specified, we get the NP-hard TSP with Neighborhoods problem.

TSPN: \(O(\log n) \)-approx in general
\(O(1) \)-approx, PTAS in special cases
The Fenced Problem:

Here that part of the path connecting P_i to P_{i+1} must lie inside a a simple polygon F_i, called the fence.
The Fenced Problem:
Applications: Parts Cutting Problem:
Applications: Safari Problem:
Applications: Zookeeper Problem:
Fact: The optimal path visits the essential cuts in the order they appear along ∂P.
Summary of TPP Results:

- Disjoint convex polygons: \(O(kn \log(n/k)) \) time, \(O(n) \) space
 (For fixed \(s, \{P_1, P_2, \ldots, P_k\} \), \(O(k \log(n/k)) \) shortest path queries to \(t \).)

- Arbitrary convex polygons: \(O(nk^2 \log n) \) time, \(O(nk) \) space

- Full combinatorial map: worst-case size \(\Theta((n - k)2^k) \)
 Output-sensitive algorithm; \(O(k + \log n) \)-time shortest path queries.

- TPP for nonconvex polygons: NP-hard
 FPTAS, as special case of 3D shortest paths
• Applications:

 – Safari: $O(n^2 \log n)$ vs. $O(n^3)$

 – Watchman: $O(n^3 \log n)$ vs. $O(n^4)$

 floating watchman: $O(n^4 \log n)$ vs. $O(n^5)$

 We avoid use of complicated path “adjustments” arguments, DP

 – Parts cutting: $O(kn \log(n/k))$
Relationship to 3D Shortest Paths:
Relationship to 3D Shortest Paths:
Relationship to 3D Shortest Paths:

We show:

- Holes are convex: poly-time
- Non-convex holes: NP-hard

last-step SPM
Unconstrained TPP: Disjoint Convex Polygons:

Given: s, t, sequence of disjoint convex polygons (P_1, \ldots, P_k)

Goal: Find a shortest k-path from $s = P_0$ to t.

Local Optimality Conditions:

![Diagram showing disjoint convex polygons with paths from s to t.]
Unconstrained TPP: Disjoint Convex Polygons:

Lemma: For any $t \in \mathbb{R}^2$ and any $i \in \{0, \ldots, k\}$, there exists a unique shortest i-path, $\pi_i(p)$, from $s = P_0$ to t.
Thus, local optimality is equivalent to global optimality.

Lemma: In the TPP for disjoint convex polygons (P_1, \ldots, P_k), each first contact set T_i is a (connected) chain on ∂P_i.

Lemma: For any $p \in \mathbb{R}^2$ and any i, there is a unique point $p' \in T_i$ such that $\pi_i(p) = \pi_{i-1}(p') \cup \overline{p'p}$.
General Approach: Build a Shortest Path Map:

SPM$_k$(s): a decomposition of the plane into cells according to the combinatorial type of a shortest k-path to t

Bad news: worst-case size can be huge:

Theorem: The worst-case complexity of SPM$_k$(s) is $\Omega((n - k)2^k)$
Good news: worst-case size cannot be *bigger* than “huge”:

Theorem: The worst-case complexity of $\text{SPM}_k(s)$ is $O((n - k)2^k)$

Size: m_i satisfies $m_i \leq 2m_{i-1} + O(|P_i|)$.

Output-sensitive algorithm to build SPM:

Theorem: One can compute $\text{SPM}_k(s)$ in time $O(k \cdot |\text{SPM}_k(s)|)$, after which a shortest k-path from s to a query point t can be computed in time $O(k + \log n)$.
Last Step Shortest Path Map:

\(T_i = \text{first contact set of } P_i: \) points where a shortest \((i-1)\)-path first enters \(P_i \) after visiting \(P_1, \ldots, P_{i-1} \)

For \(p \in T_i \):

\[r^s_i(p) = \text{set of rays of locally shortest } i \text{-paths going straight through } p: \]

- a single ray

\[r^b_i(p) = \text{set of rays of locally shortest } i \text{-paths properly reflecting at } p \]

- a single ray (\(p \) interior to an edge of \(T_i \)), or a cone (\(p \) a vertex of \(T_i \))

\[r_i(p) = r^s_i(p) \cup r^b_i(p) \]

\(R_i = \bigcup_{p \in T_i} r_i(p) \) (an infinite family of rays) is the \text{starburst} with source \(T_i \)
The Last Step Shortest Path Map:

\(S_i = \) the last step shortest path map, subdivision according to the
combinatorial type of the rays of \(R_i \) passing through points \(p \in \mathbb{R}^2 \)

\(S_i \) decomposes the plane into cells \(\sigma \) of two types:

1. cones with an apex at a vertex \(v \) of \(T_i \), whose bounding rays are
 reflection rays \(r'_1(v) \) and \(r'_2(v) \)
 \(v \) is the source of cell \(\sigma \)

2. unbounded 3-sided regions associated with edge \(e \) of \(T_i \), classified as
 - reflection cells or
 - pass-through cells
 \(e \) is the source of cell \(\sigma \)

The pass-through region is the union of all pass-through cells
Last Step Shortest Path Map:

Pass-through Region
Using the Last Step Shortest Path Map:

Find a shortest i-path to query point q:

Locate q in S_i \([O(\log |P_i|)]\)

- cell σ rooted at vertex v of T_i

 \longrightarrow last segment of $\pi_i(q)$ is \overline{vq}

 recursively compute $\pi_{i-1}(v)$ (locate v in S_{i-1}, etc)

- cell σ rooted at edge e of T_i

 σ is pass-through: $\pi_i(q) = \pi_{i-1}(q)$, so recursively compute shortest $(i - 1)$-path to q

 σ is a reflection cell: recursively compute shortest $(i - 1)$-path to q', the reflection of q wrt e

Lemma: Given S_1, \ldots, S_i, $\pi_i(q)$ can be determined in time $O(k \log (n/k))$
Algorithm:

Construct each of the subdivisions S_1, S_2, \ldots, S_k iteratively:

For each vertex v_j of P_{i+1}, we compute $\pi_i(v_j)$.

If this path arrives at v_j from the inside of P_{i+1}, then v_j is not a vertex of T_{i+1}.

Otherwise it is, and the last segment of $\pi_i(v_j)$ determines the rays $r^b_i(v_j)$ and $r^s_i(v_j)$ that define the subdivision S_{i+1}.

Theorem: For a given sequence (P_1, \ldots, P_k) of k disjoint convex polygons having a total of n vertices, a data structure of size $O(n)$ can be constructed in time $O(kn \log(n/k))$ that enables shortest i-path queries to any query point q to be answered in time $O(i \log(n/k))$.
TPP for Fenced, Arbitrary Convex Polygons:

Use Last Step Shortest Path Maps, but combinatorics and algorithm are substantially more complex.

Needed for Safari, Watchman Route, Zookeeper.
Proposition: The TPP in the L_1 metric is polynomially solvable (in $O(n^2)$ time and space) for arbitrary rectilinear polygons P_i and arbitrary fences F_i. The result lifts to any fixed dimension d if the regions P_i and the constraining regions F_i are orthohedral.
Theorem: The touring polygons problem is NP-hard, for any L_p metric ($p \geq 1$), in the case of nonconvex polygons P_i, even in the unconstrained ($F_i = \mathbb{R}^2$) case with obstacles bounded by edges having angles 0, 45, or 90 degrees with respect to the x-axis.

Proof: from 3-SAT

based on a careful adaptation of Canny-Reif proof
Open Problem:

What is the complexity of the TPP for disjoint non-convex simple polygons?
3D Shortest Paths: Background:

- NP-hard in general [CR]

- FPTAS [Pa],[Cl],[CSY],[H-P]

 \((1 + \epsilon)\)-approx in time poly\((n, 1/\epsilon)\)

- Special cases: surfaces, \(k\) convex polytopes, buildings of \(k\) heights

 (time \(O(n^{O(k)})\))
Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are **complements** of convex polygons: TPP solves
(case includes halfplanes)
Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are *complements* of convex polygons: TPP solves (case includes halfplanes)

What if obstacles are convex polygons?
Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are \textit{complements} of convex polygons: TPP solves (case includes halfplanes)

What if obstacles are convex polygons?
Canny-Reif: NP-hard for stacked 45-45-90 triangles
Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are *complements* of convex polygons: TPP solves
(case includes halfplanes)

What if obstacles are convex polygons?
Canny-Reif: NP-hard for stacked 45-45-90 triangles
What about axis-aligned rectangular obstacles?
Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are complements of convex polygons: TPP solves
(case includes halfplanes)

What if obstacles are convex polygons?
Canny-Reif: NP-hard for stacked 45-45-90 triangles
What about axis-aligned rectangular obstacles?
New result: Still NP-hard

[M-Sharir]
Hardness Proof:

Theorem: The Euclidean shortest path problem is NP-hard for a stack of axis-parallel rectangles as obstacles.

Proof: from 3-SAT, based on modified Canny-Reif proof

- Use a cascade of path splitter gadgets to get 2^n combinatorially distinct path classes
 Paths encode an assignment of the n variables: path # i encodes assignment given by the (n-bit) binary representation of i.
- Use path shuffle gadgets to rearrange paths within a class
- Use shuffle gadgets to construct a literal filter: the only path classes that pass through unobstructed are those having bit b_i set accordingly
• Assemble 3 literal filters per clause filter: output of clause filter will contain short path classes only for those assignments (if any) that satisfy the instance of 3SAT

• Collect paths back into one path class, using inverted path splitting gadgets.

• Final question: Is there a path from s to t of length L? Yes, iff the formula is satisfied.
Splitter gadget
Shuffle gadget
Blocker

Clause filter
Literal filter
3-way splitter
Path Splitting Gadget:
Path Splitting Gadget:
Path Splitting Gadget:
Path Shuffle Gadget:
A Blocker:
Instances of Stacked Obstacles:

Poly–Time

NP–Complete

Poly time when the obstacles are “terrain like” (e.g., all contain a downwards ray)
Shortest Paths Among Balls:

Also NP-Hard: L_1 shortest paths among balls in 3D

OPEN: Euclidean shortest paths among balls in 3D? Unit balls?

OPEN: Euclidean shortest paths among aligned cubes in 3D? Unit cubes?