
: : : , Eds. Handbooks in OR & MS, Vol. 1

c

 19xx Elsevier Science Publishers B.V. All rights reserved

Chapter 1

A Survey of Computational Geometry

Joseph S. B. Mitchell

Applied Math, SUNY, Stony Brook, NY 11794-3600. Email: jsbm@ams.sunysb.edu.

Subhash Suri

Bellcore, 445 South Street, Morristown, NJ 07960. Email: suri@bellcore.com

1. Introduction

Computational geometry takes an algorithmic approach to the study of geometri-

cal problems. The principal motivation in this study is a quest for \good" algorithms

for solving geometrical problems. Of course, several practical and aesthetic factors

determine what one means by a good algorithm, but the general trend has been

to associate \goodness" with the asymptotic e�ciency of an algorithm in terms of

the time and space complexity. Lately, however, the implementational ease and ro-

bustness also are becoming increasingly important considerations in the algorithm

design.

Although many geometrical problems and algorithms were known before, compu-

tational geometry evolved into a cohesive discipline only in the mid to late seventies.

An important event in this development was the publication of the Ph.D. thesis of

M. Shamos [227] in 1978. During its �rst decade, the �eld of computational geom-

etry grew enormously as its fundamental structures were applied to a vast variety

of problems in diverse disciplines, and many new tools and techniques were devel-

oped. In the process, new insights were gained into inter-relationships among some

of these fundamental structures, which also led to a uni�cation and consolidation

of several disparate sets of ideas. In the last �ve or so years, the �eld has matured

signi�cantly, both in mathematical depth as well as in algorithmic ideas.

Computational geometry has had strong interactions with other �elds, in math-

ematics as well as in applied computer science. A particularly fruitful interplay has

taken place between computational geometry and combinatorial geometry. The lat-

ter is a branch of mathematics concerned primarily with the \counting" of certain

geometric structures. Examples include counting the maximum possible number of

1



2 J. Mitchell and S. Suri

incidences between a set of lines and a set of points, and counting the number of

lines that bisect a set of points. Both �elds seem to have bene�ted from each other:

combinatorial bounds for certain structures have been obtained by analyzing an

algorithm that enumerates them and, conversely, the analysis of algorithms often

depends crucially on the combinatorial bound on some geometric objects.

The �eld of computational geometry has also bene�ted from its interactions with

other disciplines within computer science such as VLSI, database theory, robotics,

computer vision, computer graphics, pattern recognition and learning theory. These

areas o�er a rich variety of problems that are inherently geometrical.

Due to its interconnections with many applications areas, the variety of problems

studied in computational geometry is truly enormous. Our goal is this paper is

quite modest: we survey state of the art in some selected areas of computational

geometry, with a strong bias towards problems with an optimization component.

In the process, we also hope to acquaint the reader with some of the fundamental

techniques and structures in computational geometry.

Our paper has seven main sections. The survey proper begins in Section 3, while

Section 2 introduces some foundational material. In particular, we brie
y describe

�ve key concepts and fundamental structures that permeate much of computational

geometry, and therefore are somewhat essential to a proper understanding of the

material in later sections. The structures covered are convex hulls, arrangements,

geometric duality, Voronoi diagram, and point location data structures. The main

body of our survey begins with Section 3, where we describe four popular geometric

graphs: minimum and maximum spanning trees, relative neighborhood graphs, and

Gabriel graphs. Section 4 is devoted to algorithms in path planning. The topic of

path planning is a vast one, with problems ranging from �nding shortest paths in a

discrete graph to deciding the feasible motion of a complex robot in an environment

full of complex obstacles. We brie
y mention most of the major developments in

path planning research over the last two decades, but to a large extent limit our-

selves to issues related to shortest paths in a planar domain. In Section 5, we discuss

the matching and the traveling salesman type problems in computational geometry.

Section 6 describes results on a variety of problems related to shape analysis and

pattern recognition. We close with some concluding remarks in Section 7. In each

section, we also pose what in our opinion are the most important and interesting

open problems on the topic. There are altogether twenty open problems in this

survey.

2. Fundamental Structures

2.1. Convex Hulls

The convex hull of a �nite set of points S is the smallest convex set containing

S. In two dimensions, for instance, the convex hull is the smallest convex polygon

containing all the points of S; see Figure 2.1.1 for an example. In higher dimen-

sions, the convex hull is a polytope. Before we discuss the algorithms for computing



Ch. 1. A Survey of Computational Geometry 3

a convex hull, we must address the question of representing it. There are several

representations of a convex hull, depending upon how many features of the cor-

responding polytope are described. In the simplest representation, we may only

store the vertices of the convex hull. The other extreme of the representation is the

face lattice, which stores all the faces of the convex hull as well as the incidence

relationships among the faces. The intermediate forms of representation may store

faces of only certain dimensions, such as the (d � 1)-dimensional faces, also called

the facets. The di�erences among these representations become signi�cant only in

dimensions d � 4, where the full lattice may have size �(n

bd=2c

) while the number

of vertices is obviously at most n. (Gr�ubaum's book [112] is an excellent source for

information on polytopes.)

Fig. 2.1.1. A planar convex hull.

In two dimensions, several O(n logn) time algorithms are known. Almost ev-

ery algorithmic paradigm in computational geometry has been applied successfully

to the planar convex hull algorithm: for instance, divide-and-conquer, incremen-

tal construction, planar sweep, and randomization have all been utilized to obtain

O(n logn) time algorithms for planar convex hulls; see the textbook by Preparata

and Shamos [211]. The best theoretical bound for the planar convex hull problem

is achieved by an algorithm of Kirkpatrick and Seidel [151], which runs in time

O(n logh), where h is the number of convex hull vertices.

In three dimensions, Preparata and Hong [210] proposed an O(n logn) time al-

gorithm based on the divide-and-conquer paradigm. Theirs was the only known

optimal algorithm in three dimensions, until Clarkson and Shor [65] developed

a randomized incremental algorithm that achieved an expected running time

O(n logn). A variant of Clarkson-Shor algorithm was proposed by Guibas, Knuth

and Sharir [116], which admits a simpler implementation as well as an easier anal-

ysis. (These randomized algorithms are quite practical and considerably easier to

implement than the divide-and-conquer algorithm.) Very recently, Chazelle and

Matousek [54] have settled a long-standing open problem by announcing a deter-

ministic O(n logh) time algorithm for the three-dimensional convex hull problem.



4 J. Mitchell and S. Suri

In higher dimensions, Chazelle [50] recently proposed an algorithm whose worst-

case running time matches the worst-case bound on the facet complexity of the

convex hull in any dimension d � 4. Chazelle's algorithm builds on earlier ideas of

Kallay [144] and Seidel [225], and runs in worst-case time O(n logn+ n

bd=2c

). The

algorithm in [50] achieves the best worst-case performance, but it does not depend

on the actual size of the face lattice. An algorithm by Seidel [226] runs in time

proportional to the size of the face lattice. In particular, the algorithm in [226] takes

O(n

2

+F logn) time for facet enumeration and O(n

2

+L logn) time for producing

the face lattice, where F is the number of facets in the convex hull and L is the

size of the face lattice; Seidel's algorithm uses a method called \gift-wrapping" and

builds upon the earlier work by Chand and Kapur [47] and Swart [237].

There is a vast literature on convex hulls, and the presentation above has hardly

scratched the surface. We have left out whole lines of investigation on the convex

hull problem, such as the expected case analysis of algorithms and the average size

of the convex hull; we refer the reader to Dwyer [83], Devroye and Toussaint [76],

and Golin and Sedgewick [107].

2.2. Arrangements

Arrangements refer to space partitions induced by lines, hyperplanes, or other

algebraic varieties. A �nite set of lines  L partitions the plane into convex regions,

called \cells," which are bounded by straight line edges and vertices. The arrange-

ment of lines A( L) refers to this collection of cells, along with their incidence re-

lations. Similarly, a set of hyperplanes (or other surfaces, such as spheres) induce

arrangements in higher dimensions.

An arrangement encodes the sign pattern for its generating set. In other words,

an arrangement is a manifestation of equivalence classes induced by a set of lines

or hyperplanes | all points of a particular cell have the same \sign vector" with

respect to all the hyperplanes in the set. This property is a key to solving many

geometric problems in computational geometry. It often turns out that solving a

geometric problem requires computing a particular cell or a family of cells in an

arrangement of hyperplanes. We will say more about this in the section on Voronoi

diagrams.

Combinatorial aspects of arrangements have been investigated for a long time;

the arrangements in two and three dimensions were studied by Steiner [112]. The

interested reader may consult Gr�ubaum's book [112] for a detailed discussion on

arrangements. We will focus mainly on the computational aspects of arrangements.

An arrangement of n hyperplanes in d-space can be computed in time O(n

d

) by

an algorithm due to Edelsbrunner et al. [91]. This bound is asymptotically tight

since a simple arrangement (where no more than d hyperplanes meet in a point)

has �(n

d

) complexity.

Although a single cell in an arrangement of hyperplanes can have complexity

�(n

bd=2c

), not many cells can be large: afterall, the combined complexity of �(n

d

)

cells is only O(n

d

). There has been a considerable amount of work on bounding



Ch. 1. A Survey of Computational Geometry 5

the complexity of a family of cells in an arrangement. For instance, in two dimen-

sions, the total complexity of any m cells in an arrangement of n lines is roughly

O(m

2=3

n

2=3

+m+n), up to some logarithmic factors [89, 25]. Extensions to higher

dimensions and related results can be found in [27, 93, 87, 208]. Arrangements of

bounded objects, such as line segments, triangles and tetrahedra, have also been

studied, see [52, 166].

2.3. Geometric Duality

Duality plays an important role in geometric algorithms, and it often provides a

tool for transforming an unfamiliar problem into a familiar setting. In this section,

we will give a brief description of two most frequently used transformations in

computational geometry.

The �rst transform D maps a point p to a hyperplane D(p) and vice versa:

p : (p

1

; p

2

; : : : ; p

d

) () D(p) : x

d

= 2p

1

x

1

+ 2p

2

x

2

+ � � �+ 2p

d�1

x

d�1

� p

d

(2.1)

Thus, in the plane the point (a; b) maps to the line y = 2ax � b, and the line

y = mx + c maps to the point (m=2;�c). This transformation preserves incidence

and order: (1) a point p is incident to hyperplane h if and only if the dual point

D(h) is incident to dual hyperplane D(p), and (2) a point p lies below hyperplane

h if and only if the dual point D(h) lies below the dual hyperplane D(p).

The second transform, also called the \lifting transform," maps a points in R

d

to a point in R

d+1

. It maps a point p = (p

1

; p

2

; : : : ; p

d

) in R

d

to the point p

+

=

(p

1

; p

2

; : : : ; p

d

; p

2

1

+p

2

2

+� � �+p

2

d

). If we treat R

d

as the hyperplane x

d+1

= 0 embedded

in R

d+1

, then the lifting transform maps a point p 2 R

d

onto its vertical projection

on the unit paraboloid U : x

d+1

= x

2

1

+ x

2

2

+ � � �+ x

2

d

. The combination of the

lifting transform and the duality map D maps a point p 2 R

d

to the hyperplane

D(p

+

) : x

d+1

= 2p

1

x

1

+ 2p

2

x

2

+ � � �+ 2p

d

x

d

� (p

2

1

+ p

2

2

+ � � �+ p

2

d

)

(2.2)

The hyperplane D(p

+

) is tangent to the paraboloid U at the point p

+

. It turns

out that this mapping is especially useful for computing Voronoi diagrams, the topic

of our next section.

2.4. Voronoi Diagram and Delaunay Triangulation

The Voronoi diagram is perhaps the most versatile data structure in all of com-

putational geometry. This diagram, along with its graph-theoretical dual, the De-

launay Triangulation, �nds applications in problems ranging from associative �le



6 J. Mitchell and S. Suri

searching and motion planning to crystallography and clustering. In this section,

we give a brief survey of some of the key ideas and results on these structures; for

further details, consult Edelsbrunner's book [86] or a survey by Aurenhammer [32].

A Voronoi diagram encodes the \nearest-neighbor" information for a set of

\sites." We begin by explaining the concept in two dimensions. Given a set of

n \sites" or points S = fs

1

; s

2

; : : : ; s

n

g in the two-dimensional Euclidean plane,

the Voronoi diagram of S partitions the plane into n convex polygons V

1

; V

2

; : : : ; V

n

such that any point in V

i

is closer to s

i

than to any other site:

V

i

= fx j d(x; s

i

) � d(x; s

j

); for all j 6= ig;

where d(x; y) is the Euclidean distance between the points x and y. An interesting

fact about Voronoi diagrams in the plane is their linear complexity: O(n) vertices

and edges.

Fig. 2.4.1. The Voronoi diagram (left) and the Delaunay triangulation (right) of a set of points in

the plane.

The Delaunay triangulation of S is the graph-theoretic dual of its Voronoi dia-

gram: two sites s

i

and s

j

are joined by an edge if the Voronoi polygons V

i

and V

j

share a common edge. Under a non-degeneracy assumption that no four points of



Ch. 1. A Survey of Computational Geometry 7

S are co-circular, the dual graph is always a triangulation of S. Figure 2.4.1 shows

an example of a Voronoi diagram and the corresponding Delaunay triangulation.

Just like convex hulls, algorithms based on several di�erent paradigms are known

for the construction of planar Voronoi diagrams and Delaunay triangulations, such

as divide-and-conquer [82, 117], plane sweep [97], and randomized incremental

methods [65, 116]. They all run in O(n logn) time (worst-case for deterministic,

and expected for randomized).

The concepts of Voronoi diagram and Delaunay triangulation extend naturally to

higher dimensions, as well as to other metrics. In d dimensions, the Voronoi diagram

of a set of points S is a tessellation of E

d

by convex polyhedra. The polyhedral cell

V

i

consists of all those points that are closer to s

i

than to any other site in S. The

Delaunay triangulation of S is the geometric dual of the Voronoi diagram: there

is a k-face for every (d � k)-face of the Voronoi diagram. In particular, there is

an edge between s

i

and s

j

if the Voronoi polyhedra V

i

and V

j

share a common

(d� 1)-dimensional face. An equivalent way of de�ning the Delaunay triangulation

is via the empty-sphere test: a (d+ 1)-tuple (s

1

; s

2

; : : : ; s

d+1

) is a simplex (trian-

gle) of the Delaunay triangulation of S if and only if the sphere determined by

(s

1

; s

2

; : : : ; s

d+1

) does not contain any other point of S. The Voronoi diagram of n

points in d dimensions, d � 3, can have super-linear size: �(n

dd=2e

) [86].

It turns out that Voronoi diagrams and Delaunay triangulations are intimately

related to convex hulls and arrangements via duality transforms. This relationship

was �rst discovered by Brown [42], who showed using an inversion map that Voronoi

diagram of a set S 2 R

d

corresponds to the convex hull of a transformed set in

R

d+1

. Later Edelsbrunner and Seidel [92] extended and simpli�ed this idea, using

the paraboloid transforms mentioned in the previous section. We now sketch their

idea.

Let S = (s

1

; s

2

; : : : ; s

n

g be a set of n points in R

d

. We map S to a set of

hyperplanes D(S

+

) in R

d+1

, using the combination of lifting and duality maps

mentioned in Section 2.3. In particular, a point s = (a

1

; a

2

; : : : ; a

d

) maps to the

hyperplane D(s

+

) whose equation is

x

d+1

= 2a

1

x

1

+ 2a

2

x

2

+ � � �+ 2a

d

x

d

� (a

2

1

+ a

2

2

+ � � �+ a

2

d

):

Let P be the polyhedron de�ned by the intersection of \upper" halfspaces bounded

by these hyperplanes. Then, the vertical projection of P onto the hyperplane x

d+1

=

0 gives precisely the Voronoi diagram of S in R

d

.

A similar (and perhaps easier to visualize) relationship exists between convex

hulls and Delaunay triangulations, using only the lifting transform. We map the

points S = fs

1

; s

2

; : : : ; s

n

g to their \lifted" counterpart S

+

= fs

+

1

; s

+

2

; : : : ; s

+

n

g.

Now compute the convex hull of S

+

. The triangles in the Delaunay triangulation

of S correspond precisely to the facets of CH(S

+

) with downward normal.

Thus, both the Voronoi diagram and the Delaunay triangulation of a set of points

in R

d

may be computed using a convex hull algorithm in R

d+1

. This relationship

also explains why the worst-case size of both a Voronoi diagram in R

d

and a convex

hull in R

d+1

is �(n

b(d+1)=2c

).



8 J. Mitchell and S. Suri

2.5. Point Location

Many problems in computational geometry often require solving a so-called point

location problem. Given a partition of space into polyhedral cells and a query point

q, the problem is to identify the cell containing q. For instance, if Voronoi diagrams

are used for answering \nearest neighbor" queries, one needs to locate the Voronoi

polyhedron containing the query point. Typically, a large number of queries are

asked with respect to the same cell complex; thus, it makes sense to preprocess the

cell complex in order to speed up queries.

The problem has been studied intensely in two dimensions, where several optimal

algorithms and data structures are now known. These algorithms can preprocess

a planar map on n vertices into a linear space data structure and answer a point

location query in O(logn) time (see [163, 150, 90, 108]).

In higher dimensions, the point location problem is less well-understood, and no

algorithm simultaneously achieves optimal bounds for preprocessing time, storage

space, and query time. We give a brief summary of results and give pointers to rele-

vant literature. We denote the performance of an algorithm by the triple fP; S;Qg,

which refer to preprocessing time, storage space, and query time.

Preparata and Tamassia [238] give an fO(n log

2

n); O(n log

2

n); O(log

2

n)g algo-

rithm for point location in a convex cell complex of n facets in three dimensions.

Using randomization, Clarkson [63] gives an fO(n

d+"

); O(n

d+"

); O(logn)g algo-

rithm for point location in an arrangement of n hyperplanes in d dimensions; the

space and query bounds are worst-case, but the preprocessing time is expected.

Chazelle and Friedman [53] were later able to make Clarkson's algorithm deter-

ministic, albeit at an increased preprocessing cost, resulting in an algorithm with

resource bounds fO(n

d(d+3)=2+2

); O(n

d

); O(logn)g.

3. Geometric Graphs

3.1. Minimum Spanning Trees

The minimumspanning tree (MST) problem is one of the best-known problems of

combinatorial optimization, and it has received a considerable attention in compu-

tational geometry as well. Given a graph G = (V;E), with non-negative real-valued

weights on edges, a minimum spanning tree of G is an acyclic subgraph of G that

spans all the nodes in V and has minimum total edge weight. An MST has obvious

applications in the design of computer and communication networks, transportation

systems, and other kinds of networks. But applications of the minimum spanning

tree extend far beyond network design problems. They are used in problems as

diverse as network reliability, computer vision, automatic speech recognition, clus-

tering and classi�cation, matching and traveling salesman problems, and surface

homogeneity tests.

E�cient algorithms for computing an MST have been known for a long time;

a survey by Graham and Hell [111] traces the history of MST and cites algo-



Ch. 1. A Survey of Computational Geometry 9

rithms dating back to the beginning of the century. Although the algorithms of

Kruskal [154] and Prim [212] are among the best known, an algorithm by Bor�uvka

preceded them by almost thirty years [111]. Using suitable data structures, these

algorithms can be implemented in O(jEj log jV j) or O(jV j

2

) time. In the last two

decades, several new implementations and variants of these basic algorithms have

been proposed, and the fastest ones run in almost linear time in the size of the

graph [98, 100].

The interest of computational geometry researchers in MST stems from the ob-

servation that in many applications the underlying graph is Euclidean: we want to

compute a minimum spanning tree for a set of n points in R

d

, for d � 1. The set

of n points in this case completely speci�es the graph, without an explicit enumer-

ation of the edges. Since the edge-weights in this geometric graph are not entirely

arbitrary, a natural question is if one can compute an MST in (asymptotically) less

than n

2

steps, that is, without inspecting every edge.

Surprisingly, it turns out that for a set of n points in the plane, an MST can

be computed in O(n logn) time. A key observation is the following lemma, which

states that the edges of an MST are contained in the Delaunay triangulation graph;

we omit the proof, but an interested reader may consult the book of Preparata-

Shamos [211].

Lemma 3.1. Let S be a set of n points in the plane, and let DT (S) denote the

Delaunay triangulation of S. Then, MST (S) � DT (S).

We recall from Section 2.4 that the Delaunay triangulation in two dimensions

is a planar graph. Thus, by running an e�cient graph MST algorithm on DT (S),

we can �nd a minimum spanning tree of S in O(n logn) time. In fact, given the

Delaunay triangulation, a minimum spanning tree of S can be extracted in linear

time, by using an algorithm of Cheriton and Tarjan [56], which computes an MST

in linear time for planar graphs.

Lemma 3.1 holds in any dimension; however, it no longer serves a useful purpose

for computing minimum spanning trees in higher dimensions since the Delaunay

graph can have size 
(n

2

) in dimensions d � 3 [211]. Nevertheless, the under-

lying geometry can be exploited to compute an MST in subquadratic worst-case

time. Yao [259] has proposed a general method for computing geometric minimum

spanning trees in time O(n

2��

d

(logn)

1��

d

), where �

d

is a dimension-dependent

constant. Yao's algorithm is based on the following idea: if we partition the space

around a point p into polyhedral cones of su�ciently small angular diameter, then

there is at most one MST edge incident to p per cone, and this edge joins p to its

nearest neighbor in that cone. In order to �nd these nearest neighbors e�ciently,

Yao utilizes a data structure that, after a polynomial-time preprocessing, can de-

termine a nearest neighbor in logarithmic time. In the original paper of Yao [259],

the constant �

d

had value of 2

�(d+1)

, thus, making his algorithm only slightly sub-

quadratic; however, the interesting conclusion is that an MST can be computed

without checking all the edges.

The exponent in the general algorithm of Yao has steadily improved, as better

data structures have been developed for solving the nearest-neighbor problem. Re-



10 J. Mitchell and S. Suri

cently, Agarwal et al. [2] have shown also that computationally the twin problems of

computing a minimum spanning tree and computing a bi-chromatic nearest neigh-

bor are roughly equivalent. The constant �

d

in the running time their algorithm

is roughly

2

dd=2e+1

[2]. In three dimensions, the algorithm of [2] computes an MST

in O(n

4=3

log

4=3

n) time. An alternative and somewhat simpler, albeit randomized,

algorithm of the same complexity is given by Agarwal, Matou�sek and Suri [4].

There also has been work on computing an approximation of the MST.

Vaidya [245] constructs in O("

�d

n logn) time a spanning tree with length at most

1 + " times the length of an MST. If the n points are independently and uniformly

distributed in the unit d-cube, then the expected time complexity of Vaidya's algo-

rithm is O(n�(cn; n)), where � is the inverse Ackermann function.

The best lower bound known for the MST problem is 
(n logn), in any �xed

dimension d � 1. (The lower bound holds in the algebraic tree model of computation

for any input consisting of an unordered set of n points; o(n logn) time algorithms

are possible for special con�gurations of points, such as the vertices of a convex

polygon if the points are given in order along the boundary of the polygon.) It is

an outstanding open problem in computational geometry to settle the asymptotic

time complexity of computing a geometric minimum spanning tree in d-space.

Open Problem 1. Given a set S of n unordered points in E

d

, compute its Eu-

clidean minimum spanning tree in O(c

d

n logn) time, where c

d

is a constant de-

pending only on the dimension d. Alternatively, prove a lower bound that is better

than 
(n logn).

There is an obvious connection between MST and nearest neighbors: the MST

neighbors of a points s include a nearest neighbor of s. Thus, the all-nearest-

neighbors problems, which asks for a nearest neighbor for each of the points of

S, is no harder than computing the MST (S). A few years ago, Vaidya [248] gave

an O(c

d

n logn) time algorithm for the all-nearest-neighbors problems for any �xed

dimension; the constant c

d

in Vaidya's algorithm is of the order of 2

d

.

Unfortunately, no reduction in the converse direction (given all nearest neighbors,

compute MST) is known. However, the result of Agarwal et al. [2] points out an

equivalence between the MST and the bi-chromatic closest pair problem. The bi-

chromatic closest pair problem is de�ned for two d-dimensional sets of points R

and B, and it asks for a pair r 2 R and b 2 B that minimizes the distance over

all such pairs. It is shown in [2] that the asymptotic time complexities of the two

problems are the same if they have the form �(n

1+"

), for any " > 0, otherwise,

they are within a polylogarithmic factor of each other. This leads to the following

open problem.

Open Problem 2. Given two unordered sets of points B;R � E

d

, compute a bi-

chromatic closest pair of B and R in time O(c

d

n logn), where n = jBj+ jRj and

c

d

is a constant depending only on the dimension d. Alternatively, prove a lower

bound better than 
(n logn).



Ch. 1. A Survey of Computational Geometry 11

3.2. Maximum Spanning Trees

A maximum spanning tree is the other extreme of the minimum spanning tree:

it maximizes the total edge weight. In graphs, a maximum spanning tree can be

computed using any minimum spanning tree algorithm, by simply negating all the

edge weights. But what about a geometric maximum spanning tree? Is it possible

to compute the maximum spanning tree of a set of points in less then quadratic

time?

As a �rst attempt, we could try to generalize Lemma 3.1. Instead of a Delaunay

triangulation, we would consider the so-called furthest-point Delaunay triangula-

tion, which is the graph-theoretic dual of the furthest-point Voronoi diagram. (In

a furthest-point Voronoi diagram of a set of points S, the region associated with a

site s

i

2 S consists of all the points x that satisfy d(x; s

i

) � d(x; s

j

), for all s

i

6= s

j

;

see Preparata-Shamos [211] for details.) Unfortunately, the maximum spanning tree

edges do not necessarily lie in the furthest-point Delaunay triangulation. One of the

reasons why this relationship does not hold is trivial: the furthest-point Delaunay

triangulation only triangulates the convex hull vertices of S; the interior points of

S have an empty furthest-point Voronoi polygon. The trouble in fact goes deeper:

even if all points of S were to lie on its convex hull, the maximum spanning tree

does not always lie in the Delaunay triangulation. Consider the example in Fig-

ure 3.2.1, which is due to Bhattacharya and Toussaint [40]. In this �gure, 4ACD

is an equilateral triangle and B lies on the line joining D with the center O of the

circle ACD such that 2d(D;O) > d(D;B) > d(D;A). It is easy to check that the

furthest-point Delaunay triangulation consists of triangles 4ABC and4ACD, and

does not include the diagonal BD. On the other hand, the maximum spanning tree

of fA;B;C;Dg necessarily contains the edge BD; the other two edges can be any

two of the three edges of the equilateral triangle 4ACD.

An optimalO(n logn) time algorithm for computing a maximumspanning tree of

n points in the plane was proposed a few years ago by Monma, Paterson, Suri and

Yao [184]. Their algorithm starts by computing the furthest neighbor graph: connect

each point to its furthest neighbor. This results in a forest, whose components are

called clusters in [184]. Monma et al. show that these clusters can be cyclically

ordered around their convex hull, and that the �nal tree can be computed by

merging adjacent clusters, where merging two clusters means adding a longest edge

between them. The algorithm in [184] runs in O(n) time if all the points lie on their

convex hull.

Subquadratic algorithms for higher dimensional maximum spanning trees were

obtained a little later by Agarwal, Matou�sek, and Suri [4], who proposed random-

ized algorithms of expected time complexity O(n

4=3

log

7=3

n) for dimension d = 3,

and O(n

2��

d

) for dimension d � 4, where �

d

is roughly

2

dd=2e+1

. Agarwal, Ma-

tou�sek, Suri [4] also present a simple approximation algorithm that computes in

O("

(1�d)=2

n log

2

n) time a spanning tree with total length at least (1� ") times the

optimal.



12 J. Mitchell and S. Suri

A

D

C

B .
O

Fig. 3.2.1. MXST is not a subset of farthest-point Voronoi diagram.

3.3. Applications of Minimum and Maximum Spanning Trees

We said earlier that minimum spanning trees have several applications; some

are obvious, such as network design problems, and some are less obvious, such as

pattern recognition, traveling salesman, and clustering problems. In this section, we

mention some constrained clustering problems that can be solved e�ciently using

minimum and maximum spanning trees.

Given a set of points S in the plane, de�ne a k-partition of S as a decomposition

of S into k disjoint subsets fC

1

; C

2

; : : : ; C

k

g. We want to �nd a k-partition that

maximizes the minimum intercluster distance: min

i;j

minfd(s; t) j s 2 C

i

; t 2 C

j

g.

Asano et al. [30] show that an optimal k-partition is found by deleting the (k � 1)

longest edges from the minimum spanning tree of S.

Next, consider the problem of partitioning a point set S into two clusters subject

to the condition that the larger of the two diameters is minimized; recall that the

diameter of a �nite set of points is that maximum distance between any two points

in the set. An O(n logn) time solution of this problem was proposed by Asano

et al. [30], and also by Monma and Suri [185], based on the maximum spanning

tree. The method of Monma and Suri is particularly simple: compute a maximum

spanning tree of S and 2-color its nodes (points). The partition induced by the

2-coloring is an optimal minimum diameter 2-partition.

A related bi-partition problem is to minimize the sum of measures of the two

subsets. Monma and Suri [185] gave an O(n

2

) time algorithm for computing a bi-

partition of n points minimizing the sum of diameters. This result was subsequently

improved to O(n log

2

n) time by Hershberger [123]. An interesting problem in this

class is to �nd a sub-quadratic algorithm for the two-disk covering of a point set

with a minimum radius. The relevant results on this problem appear in Hershberger



Ch. 1. A Survey of Computational Geometry 13

and Suri [129] and Agarwal and Sharir [5]; the former gives an O(n

2

logn) time

algorithm to check the feasibility of a covering by two disks of given radii, and the

latter gives an O(n

2

log

3

n) time algorithm for �nding the minimum radius. It is

an open problem whether a minimum radius two-disk covering of n points can be

computed in sub-quadratic time.

Open Problem 3. Given n points in the plane, give an o(n

2

) time algorithm for

computing the minimum radius r such that all the points can be covered with two

disks of radius r; also, �nd the corresponding disks.

3.4. Gabriel and Relative Neighborhood Graphs

Nearest neighbor relationships play an important role in pattern recognition prob-

lems. One of the simplest graphs encoding these relationships is the nearest neighbor

graph, which has a (directed) edge from point a to point b if b is a nearest neighbor

of a. The minimum spanning tree is a next step, which repeatedly applies the near-

est neighbor rule until we obtain a connected graph. Building on this theme, several

other classes of graphs have been introduced. We discuss two such graphs in this

section: the Gabriel graph and the relative neighborhood graph. The Gabriel graph

was introduced by Gabriel and Sokal [101] in the context of geographical variation

analysis, while the relative neighborhood graph was introduced by Toussaint [244]

in a graph-theoretical context. Matula and Sokal [167] studied several properties of

the Gabriel graphs, with applications to zoology and geography. A recent survey

paper by Jaromczyk and Toussaint [142] is a good source for additional information

on these graphs. Let us �rst describe the Gabriel graph.

Let S = fs

1

; s

2

; : : : ; s

n

g be a set of points in the plane, and de�ne the circle of

in
uence of a pair s

i

; s

j

2 S as

C(s

i

; s

j

) = fx 2 R

2

j d

2

(x; s

i

) + d

2

(x; s

j

) = d

2

(s

i

; s

j

)g:

We observe that C(s

i

; s

j

) is the circle with diameter (s

i

; s

j

). The Gabriel graph

GG(S) has the set of points S as its vertex set, and two vertices s

i

and s

j

have

an edge between them if the circle C(s

i

; s

j

) does not include any other point of S.

In other words, (s

i

; s

j

) is an edge of GG(S) if and only if d

2

(s

i

; s

k

) + d

2

(s

j

; s

k

) �

d

2

(s

i

; s

j

), for all s

k

. This de�nition immediately implies that the Gabriel graph

of S is a subgraph of the Delaunay triangulation DT (S); recall the empty circle

de�nition of Delaunay triangulations (cf. Sec. 2.4).

Matula and Sokal [167] give an alternative de�nition of the Gabriel graph: an

edge (s

i

; s

j

) of DT (S) is in GG(S) if and only if (s

i

; s

j

) intersects its dual edge

in the Voronoi diagram of S. This latter characterization leads immediately to

an O(n logn) time algorithm for computing the Gabriel graph: �rst compute the

Delaunay triangulation DT (S) and then delete all those edges that do not intersect

their dual edges in the corresponding Voronoi diagram.

In dimensions d � 3, the complexity of the Gabriel graph depends on whether

or not many points are co-spherical. (Note that this is not the case for Delaunay



14 J. Mitchell and S. Suri

triangulation.) If no more than a constant number of points lie on a common (d�1)-

sphere, then GG has only a linear number of edges. Computing this graph in less

than quadratic time is still quite non-trivial. Slightly sub-quadratic algorithms are

presented in [3]. Without the non-degeneracy assumption, the Gabriel graph can

have 
(n

2

) edges even in three dimensions. The following example gives a lower

bound construction for d = 3. Take two orthogonal, interlocking circles of radius 2,

each passing through the center of the other. In particular, let the �rst circle lie in

the xy-plane with (0;�1; 0) as the center, while the second circle lies in the yz-plane

with (0; 1; 0) as the center. Place n=2 points on the �rst circle very close to the point

(0; 1; 0), and n=2 points on the second circle close to the point (0;�1; 0). Then, it is

easy to see that the Gabriel graph of these n points contains the complete bipartite

graph between the two sets of n=2 points.

Open Problem 4. Given n points in E

d

such that only O(d) points lie on a com-

mon sphere, give an O(c

d

n logn) time algorithm to construct their Gabriel graph,

where c

d

is dimension-dependent constant. Alternatively, prove a lower bound better

than 
(n logn).

The basic construct in the de�nition of a relative neighborhood graph is the \lune

of in
uence." Given two points s

i

; s

j

2 S, their lune of in
uence L(s

i

; s

j

) is de�ned

as follows:

L(s

i

; s

j

) = fx 2 R

2

j maxfd(x; s

i

); d(x; s

j

)g � d(s

i

; s

j

)g:

Thus, the lune L(s

i

; s

j

) is the common intersection of two disks of radius d(s

i

; s

j

)

centered on s

i

and s

j

. The relative neighborhood graph RNG(S) has an edge be-

tween s

i

and s

j

if and only if the lune L(s

i

; s

j

) does not contain any other point

of S. Again, it easily follows that RNG(S) � DT (S); in fact, the relative neigh-

borhood graph is also a subgraph of the Gabriel graph, since the circle of in
uence

is a subset of the lune of in
uence. Thus, we have the following ordered relations

among the four graphs we have discussed in this section:

MST � RNG � GG � DT:

Characterization of the DT edges not in RNG, however, is not so easy as it

was for the Gabriel graph. In two dimensions, Supowit [232] presents an O(n logn)

time algorithm for extracting the RNG from the Delaunay triangulation. If the

points form the vertices of a convex polygon, then the minimum spanning tree,

relative neighbor graph, Gabriel graph, and Delaunay triangulation can each be

computed in linear time. The bound for MST , GG, and DT is implied by a linear

time algorithm for computing the Voronoi diagram of a convex polygon [8], and the

result on RNG is due to Supowit [232].

In dimensions d � 3, the size of the relative neighborhood graphs depends on

whether or not the points are co-spherical. If only a constant number of points lie on

a common (d� 1)-sphere, then the RNG has O(n) edges, but without this restric-

tion, it is easy to construct examples where RNG has 
(n

2

) edges in any dimension



Ch. 1. A Survey of Computational Geometry 15

d � 4. In R

3

, the best upper bound on the size of the relative neighborhood graph

currently known is O(n

4=3

) [3].

Open Problem 5. Given a set S of n points in E

3

such that only a constant

number of points lie on a common sphere, show that the relative neighborhood graph

of S has only O(n) edges. Alternatively, prove a super-linear lower bound on the

size of the relative neighborhood graph.

The size of the relative neighborhood graph is related to the number of bi-

chromatic closest pairs [3].

Open Problem 6. Given two unordered sets of points B;R � E

3

, what is the

maximum number of pairs (b; r) such that r 2 R is a closest neighbor of b 2 B?

4. Path Planning

4.1. Introduction

The shortest path problem is a familiar problem in algorithmic graph theory.

Given a graph G = (V;E), whose edges have non-negative, real-valued weights as-

sociated with them, a shortest path between two nodes s and t is a path in G from

s to t having the minimum possible total edge weight. The shortest path problem is

to �nd such a path. Generalizations of this basic shortest path problem include the

single source and the all-pairs shortest paths problems; the former asks for shortest

paths to all the vertices of G from a speci�ed source vertex s, and the latter asks for

shortest paths between all pairs of vertices. The best-known algorithm for comput-

ing shortest paths is due to Dijkstra [77]. If properly implemented, his algorithm

can �nd a shortest path between two vertices in time O(min(n

2

;m logn)); here n

and m denote the number of vertices and edges of G. A considerable amount of re-

search has been invested in improving this time complexity for sparse graphs, that

is, graphs with m� n

2

. Only a few years ago, Fredman and Tarjan [98] succeeded

in devising an implementation of Dijkstra's algorithm, using their Fibonnaci heap

data structure, that achieved a worst-case running time of O(m+n logn); this time

bound is optimal in a comparison-based model of computation.

The shortest path problem acquires a new richness when transported to a geo-

metric domain. Unlike a graph, an instance of the geometric shortest path problem

is typically speci�ed through the description of some geometric objects that im-

plicitly encode the graph. This raises the following rather interesting question: is

it possible to compute a shortest path without explicitly constructing the entire

graph? There are some intriguing possibilities associated with this question. For

instance, a set of geometric objects can encode some very large, super-polynomial

or even exponential, size graphs, implying that an e�cient shortest path algorithm

must necessarily avoid building the entire graph. Even if the graph is polynomial-

size, considerable e�ciency gain is possible if the shortest path problem can be

solved by constructing only a small, relevant subset of the edges. We will address



16 J. Mitchell and S. Suri

these issues in more detail later, but for now let us just say that there is a diverse

variety of shortest path problems, depending upon the type of geometric objects

considered, the metric used, and the dimension of the underlying geometric space.

We start with a discussion of some common basic concepts.

4.2. Basic Concepts

The most commonly studied shortest path problems in computational geometry

typically involve a set of polyhedral objects, called obstacles, in Euclidean d-space,

d � 2, and the goal is to �nd an obstacle-avoiding path of minimum length between

two points. Much of our discussion will be limited to shortest paths in the plane

(d = 2). A connected subset of the plane whose boundary consists of a union

of a �nite number of straight line segments will be called a polygonal domain.

The boundary segments are called edges; their endpoints are called vertices. A

polygonal domain P is called a simple polygon if it is simply-connected, that is, it

is homeomorphic to a disk. A multiply-connected polygonal domain P is also called

a polygon with holes.

4.2.1. Triangulation

A triangulation of a polygonal domain P is a decomposition of P into triangles

with disjoint interiors, with each triangle having its corners among the vertices

of P . (If we allow triangles whose corners are not among the vertices of P , the

triangulation is called a Steiner triangulation; we do not use Steiner triangulations

in this section.) It is a well-known fact that a polygonal domain can always be

triangulated (without using Steiner points). Since a triangulation is a planar graph,

the number of triangles is linearly related to the number of vertices of P .

A polygonal domain with n vertices can be triangulated in O(n logn) time [211].

This time complexity is worst-case optimal in the algebraic tree model of compu-

tation. The lower bound, however, does not apply if P is a simple polygon, raising

the possibility than a better algorithm might be possible for triangulating a simple

polygon. Indeed, the problem of triangulating a simple polygon became one of the

most notorious problems in computational geometry in the eighties. Despite the

discovery of numerous algorithms, the O(n logn) time bound remained unbeaten

in the worst-case performance. Then in 1988, a breakthrough result by Tarjan and

van Wyk [240] produced an O(n log logn) time triangulation algorithm. Finally,

Chazelle [51] recently managed to devise a linear-time algorithm for triangulating

a simple polygon, thus settling the theoretical complexity of the problem.

For a polygon with holes, it is possible to perform a triangulation in running time

dependent on the number of holes or the number of re
ex, i.e., non-convex, vertices.

In particular, a polygonal domain P can be triangulated in O(n log r) time, where

r is the number of re
ex vertices of P , or in time O(n+ h log

1+"

n), where h is the

number of holes in P and " is an arbitrarily small positive constant [37].



Ch. 1. A Survey of Computational Geometry 17

4.2.2. Visibility

Visibility is a key concept in geometric shortest paths. We say that points s and

t are (mutually) visible if the line segment joining them lies within the polygonal

domain P . The relevance to shortest path planning is clear: If points s and t are

visible to one another, then the shortest obstacle-avoiding path between them is

simply the line segment joining them.

The visibility polygon, V (s), with respect to a point s 2 P is de�ned to be the set

of points that are visible to s. A visibility polygon can be found in time O(n logn)

by applying the sweep-line paradigm of computational geometry: We simulate the

sweeping of a ray r(�) angularly about s, keeping track of the ordered crossing list

of edges of P intersecting r(�). When the ray r(�) encounters a vertex of P , we

insert and/or delete an edge from the crossing list, and we make any necessary

updates to the visibility pro�le; the cost per update is O(logn). We can always

know which vertex is encountered next by the sweeping ray if we sort the vertices

of P angularly about s, in O(n logn) time. If P has h holes, then a recent result

of He�ernan and Mitchell [120] shows that one can compute a visibility polygon in

optimal time, O(n+ h logh).

The visibility graph (VG) of P is de�ned to be the graph whose nodes are the

set of vertices of P and whose edges join pairs of vertices that are mutually visible.

Refer to Figure 4.2.1. We let E

VG

denote the number of edges in VG; note that

E

VG

�

�

n

2

�

for an n-vertex domain P . Visibility graphs were �rst introduced in the

work of Nilsson [190], who used them for computing shortest paths for a mobile

robot.

Fig. 4.2.1. A visibility graph.

The most naive algorithm for computing the VG runs in time O(n

3

), checking

each pair of vertices (u; v) for visibility by testing against all edges of P . A sub-

stantially improved algorithm is possible based on the idea of computing visibility



18 J. Mitchell and S. Suri

polygon of each vertex. The visibility graph edges incident to a vertex v can be

found in O(n logn) time by �rst constructing the visibility polygon of v, and hence

the entire visibility graph can be computed in O(n

2

logn), using only O(n) working

space.

The state of the art in VG construction remained at the O(n

2

logn) level until

1985, when Welzl [252] (and, independently, Asano et al [29]) obtained algorithms

whose worst-case running times were O(n

2

). These new algorithms rely on the

trick of mapping the vertices of P to their dual lines, building the arrangement

of these lines (in time O(n

2

) [91]), and then using the information present in the

arrangement to read o� the sorted order of vertices about each vertex v in total

time O(n

2

). Thus, the O(n) angular sorts are not independent of each other, as

they can be done collectively in total time O(n

2

). Once the angular order is known

for vertices about every other vertex, a further trick is necessary to produce the

VG without the logarithmic overhead per pair | for example, Welzl [252] uses a

topological sort (available from the arrangement) to guide the construction of the

visibility pro�les about every vertex. Edelsbrunner and Guibas [88] have shown how

to use a method of \topological sweep" to compute the VG in timeO(n

2

) using only

O(n) working storage (i.e., avoiding the need to keep the entire line arrangement

in memory during VG construction).

In the worst case, we know that it takes quadratic time (O(n

2

)) to compute a

visibility graph, since visibility graphs exist with this size. In some cases, however,

the visibility graph is very sparse (linear in size). Thus, ideally, we would like an

algorithm whose running time is output-sensitive, taking time proportional to the

size (E

VG

) of the output.

Ghosh and Mount [106] have developed such an output-sensitive algorithm,

achieving a time bound of O(n logn+E

V G

), with a working storage requirement of

O(E

VG

). Their algorithm begins with a triangulation of P and constructs VG edges

by a careful analysis of the properties of \funnel sequences". Independently, Kapoor

and Maheshwari [146] obtained a similar bound and also show how one can compute

the subgraph of VG relevant for shortest path planning in timeO(n logn+E

SP

) and

space O(E

SP

), where E

SP

is the size of the resulting subgraph. (In other words,

only those edges of the VG that appear along some nontrivial shortest path are

actually discovered and output.)

Overmars and Welzl [200] give two very simple (easily implementable) algorithms

for computing the visibility graph that use only O(n) space. The �rst algorithm

runs in time O(n

2

) and is based on \rotation trees"; the second is output-sensitive,

requiring time O(E

VG

logn). See also Alt and Welzl [18]. The main open problem

in visibility graph construction is summarized below:

Open Problem 7. Given a polygonal domain with n vertices and h holes, compute

the visibility graph in time O(h logh+E

V G

), where E

VG

is the number of edges of

the resulting graph. Ideally, do this computation using only O(n) working storage.

Mitchell and Welzl [170] have developed an on-line algorithm to construct a VG,

by showing that one can update a VG when a new obstacle is inserted in time



Ch. 1. A Survey of Computational Geometry 19

O(n + k), where k is the number of VG edges that must be removed when the

new obstacle is inserted. (Note that k may be as large as 
(n

2

).) Vegter [249, 250]

shows that a VG can be maintained under both insertions and deletions, in time

O(log

2

n + K logn) per update, where K is the size of the change in the VG. We

are left with an interesting open question:

Open Problem 8. Devise a dynamic algorithm for maintaining a visibility graph

in O(logn+K) time per insertion or deletion of an obstacle, where K denotes the

number of changes in the visibility graph.

4.3. Shortest Obstacle-Avoiding Paths

The most basic kind of geometric shortest path problem is that of �nding a

shortest path from s to t for a point robot that is con�ned to the interior of a

polygonal domain P . We assume that P has h holes (which can be thought of as

the obstacles) and a total of n vertices. In this subsection, we measure path length

according to the (usual) Euclidean metric; in the following subsections, we discuss

variants on the objective function.

4.3.1. Paths in a Simple Polygon

Assume that there are no holes in P (i.e., h = 0). Then, there is a unique

homotopy class of any path from s to t, and the shortest path from s to t will be

the unique \taut string" path. If we triangulate polygon P , then there is a unique

path in the triangulation dual graph (which is a tree in this case), from the triangle

containing s to the triangle containing t. This gives us a sleeve within P that is

known to contain the shortest s-t path. Chazelle [48] and Lee and Preparata [160]

show that, in time linear in the number of triangles de�ning the sleeve, one can

\pull taut" the sleeve, producing the unique shortest s-t path.

The algorithm proceeds incrementally, considering the e�ect of adding the tri-

angles in order along the sleeve. At a general step of the algorithm, when we are

about to add triangle �abc, we know the shortest path from s to a vertex r (of the

sleeve), and the (concave) shortest subpaths from r to a and from r to b, which

de�ne a region called the funnel with base ab and apex r. Refer to Figure 4.3.1.

In order to add �abc, we must \split" the funnel according to the taut-string path

from r to c, which will, in general, include a segment, uc, joining c to some vertex

of tangency u along one of the concave chains of the funnel. We need to keep only

one of the two funnels (based on ac and ab), since only one can lead through the

sleeve to t, which allows us to charge o� the work of searching for u to vertices that

can be discarded.

Since a simple polygon can be triangulated in linear time (Chazelle [51]), the

result of [48, 160] establishes that shortest paths in a simple polygon can be found

inO(n) time, which is worst-case optimal. This result has been generalized in several

directions:



20 J. Mitchell and S. Suri

s

r
u c

a

b

Fig. 4.3.1. Splitting a funnel.

{ Guibas et al. [114] show that one can construct the shortest path tree (and

its extension into a \shortest path map") rooted at a point s in O(n) time, af-

ter which the length of a shortest path to any query point t can be reported in

O(logn) time (and the shortest path can be output in time proportional to its

size). Their result relies on using \�nger search trees" to do funnel splitting, which

now must be done without discarding either of the two new funnels. Hershberger

and Snoeyink [126] have given a considerably simpler algorithm to compute shortest

path trees without any special data structures.

{ Guibas and Hershberger [113] show that a simple polygon can be prepro-

cessed in time O(n), into a data structure of size O(n), such that one can answer

shortest path length queries between a pair of points in O(logn) time. In fact,

within the O(logn) query time, one can construct an implicit representation of the

shortest path, so that one can output the path explicitly in time proportional to

its length (number of vertices).

{ ElGindy and Goodrich [95] give a parallel algorithm to compute short-

est paths in time O(logn), using O(n) processors (in the CREW PRAM model).

Goodrich, Shauck, and Guha [109] show how, with O(n= logn) processors and

O(logn) time, one can compute a data structure that supports O(logn) (sequential)

time shortest path queries between pairs of points in a simple polygon. They also

give an O(logn) time algorithm using O(n) processors to compute a shortest path

tree. Hershberger [124] builds on the results of [109] and gives an algorithm for short-

est path trees requiring only O(logn) time and O(n= logn) processors (CREW); he

also obtains optimal parallel algorithms for related visibility and geodesic problems.

{ Many other problems have been studied with respect to shortest path

(geodesic) distances within a simple polygon. Aronov [24] shows how to compute,

in time O(n log

2

n), the Voronoi diagram of a set of point sites in a simple poly-

gon if the metric is the geodesic distance. The geodesic diameter is the length of



Ch. 1. A Survey of Computational Geometry 21

the longest shortest path between a pair of vertices; it can be computed in time

O(n logn) ([235, 113]). The geodesic center is the point within P that minimizes

the maximum of the shortest path lengths to any other point in P ; Pollack, Sharir,

and Rote [209] give an O(n log

2

n) algorithm. Suri [235] studies problems of com-

puting geodesic furthest neighbors. The furthest-site Voronoi diagram for geodesic

distance is computed in time O(n logn) by Aronov, Fortune, and Wilfong [26].

All of the above linear-time algorithms rely on a triangulation of a simple polygon.

It's an interesting open problem whether a shortest path inside a simple polygon

can be computed optimally without a triangulation.

Open Problem 9. Given a simple polygon with n vertices, devise an O(n) time

algorithm for computing the shortest path between two points without triangulating

the polygon.

4.3.2. Paths in General Polygonal Spaces

In the general case in which P contains holes (obstacles), shortest paths can be

computed using the visibility graph, as justi�ed in the following straightforward

lemma (proved in [159, 171]).

Lemma 4.1. Any shortest path from s 2 P to t 2 P in a polygonal domain P

must lie on the visibility graph, VG, of P (where VG includes s and t, in addition

to vertices of P , as nodes).

This lemma implies that, after constructing the VG, we can search for shortest

paths in time O(E

VG

+ n logn), using Dijkstra's algorithm with appropriate data

structures (e.g., Fibonacci heaps [98] or relaxed heaps [81]). The result of Dijkstra's

algorithm is a shortest path tree, SPT(s). In practice, it may be faster to apply

the A

�

heuristic search algorithm (e.g., see Pearl [207]), using the straight-line

Euclidean distance as heuristic function, h(�) (which is a lower bound, so it implies

an \admissible" algorithm).

Since VG can be computed in time O(E

VG

+ n logn) ([106, 146]), we conclude

that Euclidean shortest paths among obstacles in the plane can be computed in

time O(E

VG

+ n logn) = O(n

2

).

Special cases of these results are possible when the obstacles are convex, in which

case the quadratic term can be written in terms of h (the number of obstacles)

rather than n (the number of vertices); see Mitchell [171] and Rohnert [217, 216].

Another special case of relevance to VLSI routing problems (see [66, 161, 102]) is

to compute shortest paths among obstacles of a given homotopy type. Hershberger

and Snoeyink [126] generalize the shortest path algorithm for simple polygons to

show that one can compute a shortest path among obstacles of a particular \thread-

ing" in time proportional to the \size" of the description of the homotopy type.

4.3.2.1. Shortest Path Maps A shortest path map, SPM(s), is an implicit represen-

tation of the set of shortest paths from s to all points of P . The utility of SPM(s) is



22 J. Mitchell and S. Suri

that it is a planar subdivision (of size O(n)) such that once we perform an O(logn)

time point location query for t, the map tells us the length of a shortest s-t path

and allows a path to be reported in time proportional to its size (number of bends).

The general concept of shortest path maps applies to all metrics; here, we mention

some facts relevant to Euclidean shortest paths among polygonal obstacles in the

plane.

If our �nal goal is to compute a shortest path map, SPM(s), then we can obtain

it in O(n logn) time, given the shortest path tree obtained by searching VG with

Dijkstra's algorithm [174].

An alternative approach is to build the (linear-size) SPM(s) directly, and avoid

altogether the construction of the (quadratic-size) VG. Lee and Preparata [160]

use this approach to construct a shortest path map in optimal O(n logn) time

for the case of obstacles that are parallel line segments (implying monotonicity of

shortest paths with respect to the direction perpendicular to the segments). This

approach also leads Reif and Storer [214] to an O(hn+ n logn) time, O(n) space,

algorithm for general polygonal obstacles based on adding the obstacles one-at-a-

time, updating the SPM(s) at each step using a shortest path algorithm for simple

polygons (without holes).

Mitchell [174] shows how the Euclidean SPM(s) can be built in O(kn log

2

n) time,

O(n) space, where k is a quantity called the \illumination depth" (and is bounded

above by the number of obstacles touched by a shortest path). This algorithm is

based on a general technique for solving geometric shortest path problems, called

the continuous Dijkstra paradigm (see [171, 176, 177, 174, 175, 181, 173]). The main

idea is to simulate the \wavefront propagation" that occurs when running Dijkstra's

algorithm in the continuum. The continuous Dijkstra paradigm has led to e�cient

algorithms for a variety of shortest path problems, as we mention later, including

shortest paths on polyhedral surfaces [176], shortest paths through \weighted re-

gions" [177], maximum \
ows" in the continuum [173], and rectilinear paths among

obstacles in the plane [175, 181].

A major open question in planar computational geometry is to devise a

subquadratic-time algorithm for Euclidean shortest obstacle-avoiding paths. The

only known lower bound is the trivial (
(n+ h logh)) one.

Open Problem 10. Given a polygonal domain with n vertices, compute a Eu-

clidean shortest path between two points in O(n logn) time.

4.4. Other Notions of \Short"

Instead of measuring the length of a path as its Euclidean length, several other

objective functions are possible, as we describe below.

4.4.1. Rectilinear Metric

If we measure path length by the L

1

(or L

1

) metric (d

1

(p; q) = jp

x

� q

x

j+ jp

y

�

q

y

j or d

1

(p; q) = maxfjp

x

� q

x

j; jp

y

� q

y

jg), or require that paths be rectilinear



Ch. 1. A Survey of Computational Geometry 23

(with edges parallel to the coordinate axes), then subquadratic-time algorithms for

shortest paths in the plane are known.

For the general case of a polygonal domain P , Mitchell [175, 181] shows how to

apply the continuous Dijkstra paradigm to build the L

1

(or L

1

) shortest path map

in time O(n logn) (and space O(n)).

Clarkson, Kapoor, and Vaidya [64] develop a method based on principles similar

the use of visibility graphs in searching for L

2

optimal paths: They construct a

sparse graph (with O(n logn) nodes and edges) that is path preserving, meaning

that it su�ces for searching for shortest paths. This allows them to apply Dijkstra's

algorithm, obtaining an O(n log

2

n) time (O(n logn) space) algorithm for L

1

short-

est paths. Alternatively, this approach yields an O(n log

1:5

n) time (O(n log

1:5

n)

space) algorithm [64, 253].

4.4.1.1. Fixed Orientations and Approximations. Methods for �nding L

1

short-

est paths generalize immediately to the case of �xed orientation metrics in which

distances are measured in terms of the length of the shortest polygonal path

whose links are restricted to a set of k �xed orientations (see Widmayer, Wu, and

Wong [254]). (The L

1

and L

1

metrics are special cases in which there are four �xed

orientations, equally spaced by 90 degrees.) The result is an algorithm for �nding

shortest obstacle-avoiding paths in time O(kn logn) [175, 181].

We can apply the above result to get an approximation algorithm for Euclidean

shortest paths by noting that the Euclidean metric is approximated to within ac-

curacy O(1=k

2

) by the �xed orientation metric with k equally spaced orientations.

The result is an algorithm that runs in time O((n=

p

�) logn) to produce a path

guaranteed to have length within factor (1 + �) of the Euclidean shortest path

length [181]. Clarkson [62] also gives an approximation algorithm, using a related

method, that computes an �-optimal path in time O(n=�+ n logn), after spending

O((n=�) logn) time to build a data structure of size O(n=�).

4.4.2. Minimum Link Paths

In some applications, the number of edges in a path, and not its length, is a more

appropriate measure of the path complexity. In real life, for instance, while traveling

in an unfamiliar territory, we tend to prefer directions with fewer turns, even at the

expense of a slight increase in travel time. The technical motivation for minimizing

the number of edges in a path arises from applications in robot motion planning,

graph layouts, and telecommunication networks, where straight-line routing is often

cheaper and preferable while \turning" is an expensive operation [189, 215, 233,

236]. One also encounters minimum link paths in solid modeling, where they are

used for curve-compression and the approximation of univariate functions [188, 140,

169, 179, 115].

With this background, let us now formally de�ne the notion of a minimum link

path. We concentrate on two dimensions, but extensions to higher dimensions will

be obvious. Given a polygonal domain P , a minimum link path between two points



24 J. Mitchell and S. Suri

s and t is a polygonal path with fewest possible number of edges that connects s

to t while staying inside P . The link distance between s and t, denoted d

L

(s; t), is

the number of edges in a minimum link path from s to t. (It is possible that there

is no path from s to t avoiding all the obstacles, in which case the link distance is

de�ned to be in�nite.)

Most of the results on minimum link paths are for the case of a simple polygon,

and so we discuss that �rst.

Minimum link paths in a simple polygon

Like other shortest path problems, a considerable e�ort has been spent on the

simple polygon. In this case, the obstacle space consists of the boundary of a simple

polygon P and the free-space consists of the interior of the polygon. Evidently, the

notion of link distance is closely related to the notion of visibility. After all, the

visibility polygon V (s) consists of precisely the set of points whose link distance to

s is one. Building upon this idea, Suri [233, 236] introduced the concept of a window

partition of a polygon. The window partition of P with respect to s is a partition

of the interior of P into cells over which the link distance to s is constant. Clearly,

V (s) is the cell with link distance 1. The cells with link distance 2 are the regions

of P � V (s) that are visible from the windows of V (s); a window of V (s) is an

edge that forms a boundary between V (s) and P � V (s). The cells with larger link

distance are obtained by iterating this procedure. Figure 4.4.1 shows an example

of a window partition.

o

s

2

2

2

3

31

t

Fig. 4.4.1. The window partition of a polygon from point s. Numbers in regions denote their link

distance from s. A minimum link path from s to t has three links.

Window partitions turn out to be a powerful tool for solving a number of mini-

mum link path problems, both optimally as well as approximately. In [233], Suri



Ch. 1. A Survey of Computational Geometry 25

presents a linear time algorithm for computing the window partition of a triangu-

lated simple polygon. Based on this construction, he derives the following results:

(i) The link distance from a �xed point s to all the vertices of P can be com-

puted easily once the window partition from s has been computed: the link distance

of a vertex v is k if the cell containing v has label k.

(ii) The window partition is a planar subdivision, which can be preprocessed

in linear additional time to allow point location queries in logarithmic time

(cf. Section2.5). With this preprocessing, the link distance from s to a query point

t can be determined in O(logn) time.

(iii) The graph-theoretic dual of the window partition is a tree, called the window

tree. Suri [236] observes that distances in the window tree nicely approximate the

link distance between points. In particular, he shows how to calculate the link

diameter of the polygon within �2 links in linear time; the link diameter is the

maximum link distance between any two points of the polygon. More generally, the

link-farthest neighbor of each vertex of P can also be computed within �2 links in

linear time.

In all the cases above, a minimum link path can always be extracted in time

proportional to the link distance. Suri [234] and Ke [147] propose O(n logn) time

algorithms for computing the link diameter exactly. Another link-distance related

concept that may have applications in shape analysis is link center : it is the set

of points from which the maximum link distance to any point of P is minimized.

Lenhart et al. [162] proposed an O(n

2

) time algorithm, based on window parti-

tions, for computing the link center. This was subsequently improved to O(n logn),

independently by Ke [147] and Djidjev, Lingas and Sack [79].

Recently, Arkin, Mitchell and Suri [22] have developed an O(n

3

) space data

structure for answering link-distance queries in a simple polygon when both s and t

are query points. Their data structure stores O(n

2

) window partitions. The query

algorithm exploits information about the geodesic path between s and t. If it detects

that the geodesic path has an in
ection edge (i.e., the predecessor and the successor

edges lie on opposite sides of the edge) or a rotationally pinned edge (i.e., the polygon

touches the edges from both sides), then the link distance d

L

(s; t) is computed by

searching the window partitions of the two polygon vertices that are associated with

the in
ection or pinned edge. If the path has neither an in
ection nor a pinned

edge, then it must be a spiral path, and this is the most complicated case. The

query algorithm in this case uses projection functions, which are fractional linear

forms, to track the other endpoint of a constant-turning path as its �rst endpoint

moves linearly along an edge of P . The query algorithm of [22] works even if s

and t are convex polygons instead of just points, however, the query time becomes

O(logk logn) if the two polygons have a total of k edges. In particular, if the

polygons have a �xed number of edges, the query time is asymptotically optimal.

Open Problem 11. Devise a data structure to answer 2-point link distance

queries in a simple polygon. The data structure should use no more than O(n

2

)

time and space for its construction and answer queries in O(logn) time.



26 J. Mitchell and S. Suri

Minimum link paths among obstacles

With multiple obstacles, determining the \homotopy class" of an optimal path

becomes a critical problem. Of course, the basic idea behind the window partition

still holds: repeatedly compute visibility polygons until the destination point t is

reached. However, unlike the simple polygon, where t is always separated from s

by a unique window, there are multiple homotopically distinct paths in the general

case. It requires a careful pruning technique to overcome a combinatorial explosion.

There is essentially one result on link distance among general polygonal obstacles.

Mitchell, Rote and W�oginger [178] present an O(E

VG

log

2

n) time algorithm for

�nding a minimum link path between two �xed points among a set of polygonal

obstacles with a total of n edges, where E

V G

= O(n

2

) is the size of the visibility

graph. The result of Mitchell et al. is only a �rst step; the problem of computing

link distances among obstacles is far from solved. The only lower bound known is


(n logn) [178].

Open Problem 12. Given a polygonal domain having n vertices, compute a

minimum-link path between two given points in time O(n logn) (or any subquadratic

bound).

The assumption of orthogonal obstacles and rectilinear paths results in signi�cant

simpli�cations. In [72], de Berg shows how to preprocess a rectilinear simple poly-

gon in O(n logn) time and space to support O(logn) time rectilinear link distance

between two arbitrary query points. In [74], de Berg et al. develop an O(n logn)

space data structure for answering �xed-source link distance queries among or-

thogonal obstacles, with a total of n edges. The data structure requires O(n

2

)

preprocessing time, and can answer a link distance query in O(logn) time. In fact,

their data structure allows for the minimization of a combined metric, based on a

�xed linear combination of the L

1

length and the link length: the cost of a rectilin-

ear path is its L

1

length plus C times the number of turns, for some pre-speci�ed

constant C � 0. Subsequently, de Berg, Kreveld, and Nilsson [73] generalized the

result of [74] to arbitrary dimensions. In d dimensions, their data structure requires

O((n logn)

d�1

) space, O(n

d

logn) preprocessing time, and supports �xed-source

link distance queries in O(log

d�1

n) time [73].

For the general link distance problem in higher dimensions, the only results known

are approximations: Mitchell and Piatko [182] show that one can get within a

constant factor (2) of the link distance in polynomial time (for any �xed d).

4.4.3. Weighted Regions

A natural generalization of the standard shortest obstacle-avoiding path problem

is to consider varied terrain in which each region of the plane is assigned a weight

that represents the cost per unit distance of traveling in that region. Clearly, the

standard problem �ts within this framework if we let obstacles have weight1 while

free space has weight 1.

We can think of the \weighted plane" as being a network with an (uncountably)

in�nite number of nodes, one per point of the plane. We join every pair of points



Ch. 1. A Survey of Computational Geometry 27

with an edge, assigning a weight equal to the line integral of the weight function

along the straight line segment joining the two points.

More formally, we consider the problem in which a planar polygonal subdivision

S is given, with a weight � 2 f0; 1; : : :;W;+1g assigned to each face of the subdi-

vision. We let n denote the total number of vertices describing the subdivision. Our

objective is to �nd a path � from s to t that has minimum weighted length over all

paths from s to t. (The weighted length of a path is given by the path integral of

the weight function | it equals the weighted sum of its Euclidean lengths within

each region.) This problem of �nding an optimal path within a varied terrain is

called the Weighted Region Problem (WRP), and was introduced by Mitchell and

Papadimitriou [171, 177].

There are many potential applications of the WRP. The original motivation was

to solve the minimum-time path problem for a point robot (without dynamic con-

straints) moving in a terrain of varied types: grassland, brushland, blacktop, marsh-

land, bodies of water (obstacles to overland travel), and other types of terrain can

each be assigned a weight according to the maximum speed at which a mobile robot

can traverse the region. In this sense, the weights � denote a \traversability index,"

or the reciprocal of maximum speed.

Mitchell and Papadimitriou [177] present a polynomial-time solution to the WRP,

based on the continuous Dijkstra paradigm, that �nds a path guaranteed to be

within a factor of (1 + �) of the optimal weighted length, where � > 0 is any user-

speci�ed degree of precision. The time complexity of the algorithm isO(E �S), where

E is the number of \events" in the simulation of Dijkstra's algorithm, and S is the

complexity of performing a numerical search to solve the following subproblem:

Find a (1 + �)-shortest path from s to t that goes through a given sequence of

k edges of S. It is known that E = O(n

4

) and that there are examples where E

can actually achieve this upper bound (so that no better bound is possible) [177].

Mitchell and Papadimitriou also show that the numerical search can be done with

a form of binary search that exploits the local optimality condition that an optimal

path bends according to Snell's Law of Refraction when crossing a region boundary.

This leads to a bound of S = O(k

2

log(nNW=�)) on the time needed to perform a

search on a k-edge sequence, where N is the largest integer coordinate of any vertex

of the subdivision S. Since one can show that k = O(n

2

), this yields an overall time

bound of O(n

8

L), where L = log(nNW=�) can be thought of as the bit complexity

of the problem instance. Although the exponent looks particularly bad, we note

that these are truly worst-case bounds; in the average case, we might expect that

E behaves like n or n

2

, and that k is e�ectively constant.

Many other papers are written on the WRP problem and its special cases; e.g.,

see [104, 231, 11{13]. A recent pair of papers by Kindl, Shing, and Rowe [148, 149]

reports practical experience with a simulated annealing approach to the WRP.

Papadakis and Perakis [202, 201] have generalized the WRP to the case of time-

varying maps, where both the weights and the region boundaries may change over

time; they obtain generalized local optimality conditions for this case and propose

a search algorithm to �nd good paths.



28 J. Mitchell and S. Suri

4.5. Bicriteria Shortest Paths

The shortest path problem asks for paths that minimize some one objective

function that measures \length" or \cost". Frequently, however, our application

actually wants us to �nd paths to minimize two or more di�erent costs. For example,

in mobile robotics applications, we may wish to �nd a path that simultaneously is

short in (Euclidean) length and has few turns.

Multi-criteria optimization problems tend to be hard. Even the bicriteria path

problem in a graph is NP-hard [103]: Does there exist a path from s to t whose

length is less than L and whose weight is less than W? Pseudo-polynomial time

algorithms are known, and many heuristics have been devised (e.g., see [118, 122]).

Several geometric versions of bicriteria shortest path problems have recently been

investigated. Various optimality criteria are of interest, including any pair from the

following list: Euclidean (L

2

) length, rectilinear (L

1

) length, other L

p

metrics, the

number of turns in a path (its link length), the total amount of integrated turning

done by a path, etc.

For example, applications in robot motion planning problems may require us to

�nd a shortest (L

2

) path constrained to have at most k links. To date, no exact

method is known for this problem. Part of the di�culty is that a minimum-link

path will not, in general, lie on the visibility graph (or any simple discrete graph).

Arkin et al. [22] show that, in a simple polygon, one can always �nd an s-t path

whose link length is within a factor of 2 of the link distance from s to t, while

simultaneously having Euclidean length within a factor of

p

2 of the Euclidean

shortest path length. (A corresponding result is not possible for polygons with

holes.)

Mitchell et al. [183] study the problem of �nding shortest k-link paths in a simple

polygon, P . They exploit the local optimality condition on the turning angles at

consecutive bends of a shortest k-link path in order to devise a binary search scheme,

tracing paths according to this local optimality criterion, in order to �nd the turning

angle at the �rst bend point. The results of these searches are then combined via

dynamic programming recursions to yield an algorithm that produces a path whose

length is guaranteed to be within a factor (1 + �) of the length of shortest k-link

path, for any user-speci�ed tolerance �. The algorithm runs in time polynomial in

n; k and logarithmic in 1=� and the largest integer coordinate of any vertex of P .

For polygons with holes, we pose an interesting open question:

Open Problem 13. Given a polygonal domain (with holes), what is the complexity

of computing a shortest k-link path between two given points? Is it NP-complete to

decide if there exists a path with at most k links and Euclidean length at most L?

Several recent papers have addressed the bicriteria path problem for a combi-

nation of rectilinear link distance and L

1

length, in an environment of rectilinear

obstacles. In de Berg et al. [74, 73], e�cient algorithms are given in two and higher

dimensions for computing optimal paths according to a \combined metric," which

takes a linear combination of rectilinear distance and L

1

path length. (Note that

this is not the same as solving the problem of computing Pareto-optimal solutions.)



Ch. 1. A Survey of Computational Geometry 29

Yang, Lee, and Wong [258, 257] give an O(n log

2

n) algorithm for computing a

shortest k-bend path, a minimum-bend shortest path, or any combined objective

that uses a monotonic function of rectilinear link length and L

1

length in a planar

rectilinear environment. In all of these rectilinear problems, there is an underlying

grid graph which can serve as a \path preserving graph". This immediately im-

plies the existence of polynomial-time solutions to the various problems studied by

[74, 73, 258, 257]; the contributions of these papers lie in their clever methods to

solve the problems very e�ciently.

Some lower bounds on bicriteria path problems have been established by

Arkin at al. [21]. In particular, they show that the following geometric versions

are NP-hard: (1) Given a polygonal domain, �nd a path whose L

2

length is at most

L, and whose \total turn" is at most T ; (2) Given a polygonal domain, �nd a path

whose L

p

length is at most �

p

and whose L

q

length is at most �

q

(p 6= q); and (3)

Given a subdivision of the plane into red and blue polygonal regions, �nd a path

whose travel through blue (resp. red) is bound by B (resp. R).

4.6. Higher Dimensions

While the shortest obstacle-avoiding path problem is solved e�ciently in the

plane, Canny and Reif [43, 46] show that the problem of �nding shortest obstacle-

avoiding paths according to any L

p

(1 � p � 1) metric in three dimensions is

NP-hard, even when all of the obstacles are convex polytopes.

The di�culty lies in the structure of shortest paths in three dimensions: They

do not (necessarily) lie on any kind of discrete visibility graph. In general, shortest

paths in a three-dimensional polyhedral domain P will be polygonal, with bend

points that lie interior to edges of obstacles. The manner in which a shortest path

bends at an edge is well constrained: It must enter and leave at the same angle

to the edge. This implies that any locally optimal subpath joining two consecutive

obstacle vertices can be \unfolded" at each obstacle edge that it touches, in such a

way that the subpath becomes a straight segment.

The unfolding property of optimal paths can be exploited to yield polynomial-

time algorithms in the special case in which the path must stay on a polyhedral

surface. For the case of a convex surface, Sharir and Schor [230] give an O(n

3

logn)

time algorithm for computing shortest paths. Their algorithm has been improved

by Mount [186], who gives an O(n

2

logn) time algorithm for the same problem

and shows how to use only O(n logn) space. For the case of shortest paths on a

nonconvex polyhedral surface, O'Rourke, Suri, and Booth [199] give an O(n

5

) time

algorithm. Mitchell, Mount, and Papadimitriou [176] improved the time bound

to O(n

2

logn), giving an algorithm based on the continuous Dijkstra paradigm to

construct a shortest path map for any given source point on an arbitrary polyhedral

surface having n facets. Chen and Han [55] improve the algorithm of [176], obtaining

anO(n

2

) time (andO(n) space) bound. (See Aronov and O'Rourke [28] for the proof

of the nonoverlap of the \star unfolding," required by [55].)

For the case when the domain P has only a few convex obstacles, Sharir [228]



30 J. Mitchell and S. Suri

has given an n

O(k)

algorithm for shortest paths, based on a careful analysis of the

structure of shortest paths, and a bound of O(n

7

) on the number of distinct edge

sequences that correspond to shortest paths on the surface of a convex polytope.

Mount [187] has improved the bound on edge sequences to O(n

4

), which he shows to

be tight. Schevon and O'Rourke [198] show a tight bound of �(n

3

) on the number

of maximal edge sequences for shortest paths. Agarwal et al.[1] give an O(n

7

logn)

algorithm for computing all O(n

4

) edge sequences that correspond to shortest paths

on a convex polytope.

For general three-dimensional polyhedral domains P , the best algorithmic re-

sults known are approximation algorithms. Papadimitriou [204] gives a fully poly-

nomial approximation scheme that produces a path guaranteed to be no longer

than (1 + �) times the length of a shortest path. His algorithm requires time

O(n

3

(L + log(n=�))

2

=�), where L is the number of bits in an integer coordinate

of vertices of P . Clarkson [62] also gives a fully polynomial approximation scheme,

which improves upon that of [204] in the case that n�

3

is large.

While three-dimensional shortest path problems are known already to be hard,

the proof (Canny and Reif [46]) is based upon a construction in which the size of

the SPM is exponential. This leaves open an interesting algorithmic question of a

potentially practical nature, since we may hope that \in practice" such huge SPM's

will not arise:

Open Problem 14. Given a polyhedral domain in 3 dimensions, compute a short-

est path map in output-sensitive time.

4.7. Kinetics and Other Constraints

4.7.0.1. Minimum Time Paths. Any real mobile robot has a bounded acceleration

vector and a maximum speed. If we include these constraints in our model for path

planning, then an appropriate objective is to minimize the time necessary for a

(point) robot to travel from one point of free space to another, with the velocity

vector known at the start and possibly constrained at the destination. In general,

this kinodynamic planning problem is a very di�cult optimal control problem. We

are no longer in the nice situation of having optimal paths that are \taut string"

paths, lying on a visibility graph. Instead, the paths will be complicated curves in

free space, and the complexity of �nding such optimal paths remains open.

In a �rst step towards understanding the algorithmic complexity of computing

time-optimal trajectories under dynamic constraints, Canny et al [44] have pro-

duced a polynomial-time procedure for �nding a provably good approximating time-

optimal trajectory that is within a factor of (1+�) of being a minimum-time trajec-

tory. Their method is fairly straightforward | they discretize the four-dimensional

phase space that represents position and velocity. Special care is needed, however,

to ensure that the size of the grid is bounded by a polynomial in 1=� and n and the

analysis to prove the e�ectiveness of the resulting paths is quite tedious.

Canny, Rege, and Reif [45] give an exact algorithm for computing an optimal

path when there is an upper bound on the L

1

norm of the velocity and acceleration



Ch. 1. A Survey of Computational Geometry 31

vectors. Their algorithm is based on characterizing a set of \canonical solutions"

(related to \bang-bang" controls in one dimension) that are guaranteed to include

an optimal solution path. Then, by writing an appropriate expression in the �rst-

order theory of the reals, they obtain an exponential time, but polynomial space,

algorithm. It remains an open question whether or not a polynomial-time algorithm

exists.

4.7.0.2. Bounded Turning Radius. Related to the general problem of handling

dynamic constraints, is the important problem of �nding shortest paths subject to

a bound on their curvature. Placing a lower bound on the curvature can be thought

of as a means of handling an upper bound on the acceleration vector of a point robot

whose speed is constant, or can be thought of as the realistic constraint imposed

by the fact that many mobile robots have a bounded steering angle.

Fortune and Wilfong [96] gave an exponential-time decision procedure to deter-

mine whether or not it was possible for a robot to move from a start to a goal

among a set of given obstacles, while obeying a lower bound on the curvature of

its path (and not allowing reversals). If the point following the path is allowed to

reverse direction, then Laumond [157] has shown that it is always possible to obtain

a bounded curvature path if a feasible path exists.

Since the general problem seems to be extremely di�cult, a restricted version

has been studied: Wilfong [255, 256] considers the case in which the robot is to

follow a given network of lanes, with the robot allowed to turn from one segment

to another along a (bounded curvature) circular arc if the two lanes intersect. In

Wilfong [255], a polynomial-time algorithm is given for producing some feasible

path; in Wilfong [256], the problem of �nding a shortest feasible path is shown to

be NP-complete, while a polynomial-time method is given for deforming a given

feasible path into a shortest equivalent feasible path. (The time bound is O(k

3

n

2

),

where n is the number of vertices describing the obstacles, and k is the number of

turns in the path.)

4.8. Optimal Robot Motion

Most of our discussion is focused on the case of point robots. When the robot is

not a point, the problem usually becomes much harder. An exception is the case of

a circular robot (which is often a very good assumption anyhow) or a non-rotating

convex robot. In the case of a circular robot, the problem of �nding a shortest

path among obstacles is solved almost as in the point robot case | we simply

must \grow" the obstacles by the radius of the robot and \shrink" the robot to

a point. This is the standard \con�guration space" approach in motion planning,

and leads to shortest path algorithms with time bounds comparable to the point

robot case [57, 125, 171].

Optimal motion of rotating non-circular robots is a very hard problem. Consider

the simplest case of moving a line segment (\ladder") in the plane. The motion



32 J. Mitchell and S. Suri

planning problem, which ignores any measure of \cost" of motion, is solvable in time

O(n

2

logn) [261]. A natural de�nition of cost of motion for a ladder is to consider

the work necessary to move the ladder from one place to another, assuming that

there is a uniform coe�cient of kinetic friction. Optimal motion of a ladder is an

open problem at this point: Papadimitriou and Silverberg [205] and O'Rourke [196]

give solutions for restricted cases of moving a ladder among obstacles, and Icking

et al. [137] have characterized the solution for the general case without obstacles.

Open Problem 15. Given a polygonal domain, compute an optimal motion of a

ladder from one position to another.

4.9. On-line Algorithms and Navigation Without Maps

In all of the path planning problems we have discussed so far, we have assumed

that we know in advance the exact layout of the environment in which the robot

moves | i.e., we assume we are given a perfect map. In most real problems, we

cannot make this assumption. Indeed, if we are given a map or 
oorplan of where

walls and obstacles are located, the map will invariably contain inaccuracies, and

we may be interested also in being able to navigate around obstacles that may not

be in the map. For example, for a robot moving in an o�ce building, while the


oorplan and desk layouts may be considered accurate and �xed, the location of

a chair or a trashcan is something that we usually cannot assume to be known in

advance.

When planning paths in the absence of perfect map information, we must have

some model of sensory inputs that enable the robot to sense the local structure of

its environment. Many di�erent assumptions are possible here: visual sensors, range

sensors (perhaps from sonar or computed from stereo imagery), touch sensors, etc.

While numerous heuristic methods have been devised for sensor-based autonomous

vehicle navigation (see [141]), only recently has there been interest in these questions

from the theory of algorithms community.

Necessarily the theoretical results require stringent assumptions before any-

thing can be claimed and proven. One of the �rst papers was by Lumelsky and

Stepanov [164], who show that if a point robot is endowed only with a contact

(\tactile") sensor, which can determine when it is in contact with an obstacle, then

there is a strategy for \feeling" one's way from a start to goal such that the resulting

path length is at most 1.5 times the total perimeter length of the set of obstacles.

(The strategy, called \BUG2," is closely related to the strategy of keeping one's

hand on the wall when going through a maze.) No assumptions have to be made

about the shapes of the obstacles. Lumelsky and Stepanov show that this ratio

is (essentially) best possible for this model; see [71] for some further work on an

extension of the Lumelsky-Stepanov model.

An obvious complaint with the model of [164] is that it does not bound the

competitive ratio | the worst-case ratio of the length of the actual path to that

of an optimal path. Among the �rst results that bound the competitive ratio is



Ch. 1. A Survey of Computational Geometry 33

that of Papadimitriou and Yannakakis [206], who show that if the obstacles are

assumed to be squares, one can achieve a competitive ratio of

p

26

3

, and no strategy

can achieve a ratio better than

3

2

. Further, by an adversary argument, they show

that, for arbitrary (e.g., \thin") aligned rectangular obstacles and a robot that has

perfect line-of-sight vision, there is no strategy with a bounded competitive ratio.

See also [85].

Blum, Raghavan, and Schieber [41] show that if the obstacles are aligned (dis-

joint) rectangles in a square, n-by-n room, then there is a strategy using a tac-

tile sensor that achieves competitive ratio n2

O(

p

lnn)

. Bar-Eli, Berman, Fiat, and

Yan [35] give a strategy that achieves competitive ratio O(n lnn), and show that no

deterministic algorithm can yield an asymptotically better ratio (even if the robot

is endowed with perfect vision).

Klein [152] has shown that if one is navigating in a simple polygon of a special

structure (called a \street," in which it is possible for two guards to traverse the

boundary of the polygon, while staying mutually visible and never backing up), then

there is a strategy for a robot with perfect visibility sensing to achieve competitive

ratio 1 +

3

2

�.

For the problem of �nding a short path from s to t among arbitrary unknown

obstacles, Mitchell [172] has given a method of computing the best possible local

strategy, assuming that the robot has perfect vision and can remember everything

that has been seen so far, and assuming that one assigns a cost per unit distance

of some �xed constant, �, for travel in terrain that has not yet been seen.

If, instead of simply asking for a path from s to t, our objective is to traverse

a path that allows the entire space to be mapped out, then Deng, Kameda, and

Papadimitriou [75] have shown that no competitive strategy exists, in general. If

the number of obstacles is bounded, then they give a competitive strategy.

4.10. Motion Planning

There is a vast literature on the motion planning problem of �nding any feasible

path for a \robot" moving in a geometrically constrained environment; see for

instance [156] and [131], and two survey articles [261] and [224]. A general paradigm

in this �eld is to think of the motion of a d-degree-of-freedom robot as described

by the motion of a single point in a d-dimensional con�guration space, C, in which

the set of points representing feasible con�gurations of the system constitute \free

space," FP � C.

Example: A simple example of this concept is given by the planar problem of

planning the motion of a circular robot among a set of polygonal obstacles:

We think of \shrinking" the robot to a point, while expanding the obstacles by

the radius of the robot. The complement of the resulting \fattened" obstacles

represents the free space for the disk. One can use the Voronoi diagram of the

set of polygonal obstacles (treating the polygons as the \sources") to de�ne a

graph of size O(n) (computable in time O(n logn) [262]) that can be searched



34 J. Mitchell and S. Suri

for a feasible path for a disk of any given size. This method, known as the

\retraction" method of motion planning [261], solves this particular instance

of the problem in time O(n logn).

Abstractly, the motion planning problem is that of computing a path between

two points in the topological space FP. In the �rst two of �ve seminal papers on

the \Piano Movers' Problem" ([220{222, 229, 223], collected in the book [131]),

Schwartz and Sharir show that the boundary of FP is a semialgebraic set (assum-

ing the original constraints of the problem are semialgebraic). This then allows the

motion planning problem to be written as a decision question in the theory of real

closed �elds (see Tarski [241]), which can be solved by adding appropriate adja-

cency information to the cylindrical decomposition that is (symbolically) computed

by the algorithm of Collins [67]. For any �xed d and �xed degree of the polyno-

mials describing the constraints, the complexity of the resulting motion planning

algorithm is polynomial in n, the combinatorial size of the problem description.

Instead of computing a cell decomposition of FP, an alternative paradigm in mo-

tion planning is to compute a lower dimensional subspace, FP

0

� FP, and to de�ne

a \retraction function" that maps FP onto FP

0

. O'D�unlaing and Yap [194] and

O'D�unlaing, Sharir, and Yap [195, 192, 193] have computed such retractions on the

basis of Voronoi diagrams, obtaining e�cient solutions to several low-dimensional

motion planning problems.

Most recently, Canny [43] has described a method of reducing the motion planning

problem to a (one-dimensional) graph search problem, by means of a \roadmap";

this is the currently best known method for general motion planning problems. The

bottom line is that the motion planning problem can be solved in polynomial time

(polynomial, that is, in the combinatorial complexity of the set of obstacles), for

any �xed number of degrees of freedom of the robot.

Many lower bounds have also been established on motion planning problems.

The �rst such results were by Reif [213], who showed that the generalized movers'

problem (with many independently movable objects) is PSPACE-hard. Hopcroft,

Joseph, and Whitesides [130] give PSPACE-hardness and NP-hardness results for

several planar motion planning problems. See also the recent lower bounds paper

by Canny and Reif [46].

5. Matching, Traveling Salesman, and Watchman Routes

Matching and traveling salesman are among the best known problems in com-

binatorial optimization. In this section, we survey some results on these problems

where the underlying graph is induced by a geometric input.



Ch. 1. A Survey of Computational Geometry 35

5.1. Matching

5.1.1. Graph Matching

By a classical result of Edmonds, an optimal weighted matching in a general graph

can be computed in polynomial time. Speci�cally, if G = (V;E) is a graph with

real-valued edge weights, then a minimum-weight maximum-cardinality matching

in G can be found in polynomial time. Edmonds' is a primal-dual algorithm, which

works by growing and shrinking the so-called \blossoms." Exactly how these blos-

soms are maintained and manipulated critically determines the running time of the

algorithm. The original algorithm proposed by Edmonds could be implemented to

run in worst-case time O(n

4

), where n = jV j [94]; this was later improved to O(n

3

)

by Lawler [158]. The last two decades have witnessed a 
urry of research on further

improving this time complexity, in particular, for sparse graphs. The latest result

on this problem is due to H. Gabow, who presents an algorithm with the worst-case

time complexity O(n(m+n logn)), where the graph has n nodes and m edges [99].

5.1.2. Matching in the Euclidean Plane

A natural question from our point of view is this: can the O(n

3

) time bound for

matching be improved if the graph is induced by a set of points in the plane? In

other words, let S be a set of 2n points in the plane, and let G be the complete

graph on the vertex set S, with the weight of an edge (u; v) being equal to the

Euclidean distance between u and v. Does the geometry of the plane constrain an

optimal matching su�ciently to admit a faster algorithm?

In the late seventies and early eighties, several conjectures were made regarding

the relationship of minimum weight matching and other familiar geometric graphs,

such as the Delaunay triangulation or minimum spanning tree [227]. In particular,

it was conjectured that a minimum weight perfect matching of a set of points is a

subset of the Delaunay triangulation of the points. Since triangulations are planar

graphs, the validity of these conjectures would have immediately led to an order-

of-magnitude improvement in the running time of the matching algorithm for the

geometric case. Unfortunately, these conjectures all turned out to be false. Akl [10]

showed that none of the following graphs is guaranteed to contain a minimum-

weight perfect matching: Delaunay triangulation, minimum-weight triangulation,

greedy triangulation, minimum-weight spanning tree.

Nevertheless, it turns out that a faster algorithm is possible for the matching of

points in the plane. Vaidya [247] was able to improve the running time of Edmonds'

algorithm fromO(n

3

) to O(n

2:5

log

4

n), using geometric data structures and a more

careful choice of slack variables. He also gave improvements for bipartite matching

and other metrics [247]. Vaidya's method depends on e�cient solution to a bi-

chromatic closest pair problem, where points may be deleted from one set and

added to the other. Any improvements to the latter's solution would also improve

the matching algorithm's running time.

Marcotte and Suri [165] considered a special case where all the points are in a

convex position, i.e., they form the vertices of a convex polygon. The problem retains



36 J. Mitchell and S. Suri

much of its complexity even for this restricted class of input, as it can be shown that

all the counterexamples of Akl [10] still hold. But, surprisingly, Marcotte and Suri

were able to devise a much simpler and signi�cantly faster algorithm for matching.

Their algorithm is based on divide-and-conquer and runs in time O(n logn). There

are two key ideas in their algorithm: an extensibility lemma and vertex weights. The

extensibility lemma establishes a geometric condition under which a certain subset

of the edges can be immediately added to the optimal matching. The vertex weights

are real numbers carefully chosen in such a way that we can invoke the extensibility

lemma on the weighted nearest-neighbor graph. The algorithm in [165] also solves

the assignment problem in the same time bound, and it also extends to the case

where the points lie on the boundary of a simple polygon and the weight of an edge

(u; v) is the length of the shortest path from u to v inside the polygon. X. He [119]

gives a parallel version of the Marcotte-Suri algorithm that runs in O(log

2

n) time

with O(n) processors on a PRAM.

There also are numerous approximation algorithms for matching. For uniform

distributions of points, Bartholdi-Platzman [36] and Dyer-Frieze [84] describe fast

heuristics that give matchings with total weight close to optimal as n ! 1.

Vaidya [246] describes an approximation algorithm that has a guaranteed perfor-

mance for any input and works for any �xed dimension. His algorithm produces a

matching with weight at most (1+") times the weight of a minimum weight match-

ing, and runs in time roughly O(n

1:5

log

2:5

n); the constant of proportionality is of

the order of (d=")

1:5d

, where d is the dimension of input space.

Despite the failure of earlier conjectures relating an optimal matching to other

well-known geometric graphs, such as the Delaunay triangulation, it remains a rea-

sonable question whether one can de�ne certain easily constructed, sparse graphs

that are guaranteed to contain an optimal geometric matching. The ultimate ques-

tion, of course, is to determine the extent to which the geometry of the plane can

be exploited in the matching problem.

Open Problem 16. Give an o(n

2

) time algorithm for computing a minimum-

weight complete matching for a set of 2n points in the plane.

Interestingly, a result of Marcotte and Suri [165] shows that, for the vertices of

a convex polygon, �nding a maximum-weight matching is substantially easier than

�nding a minimum-weight matching. A natural question then is: does the same

hold for a general set of points.

Open Problem 17. Give an o(n

2

) time algorithm for computing a maximum-

weight complete matching for a set of 2n points in the plane.

5.1.3. Non-crossing matching

There is a celebrated Putnam Competition problem on non-crossing matching

(see [155]). Given two sets of points R (red) and B (blue) in the plane, with n

points each, �nd a matching of R and B using straight line segments so that no

two segments cross; clearly, we must assume that the points are in general position.



Ch. 1. A Survey of Computational Geometry 37

There are several proofs of the fact that a non-crossing matching always exists. We

give just one: pick a matching that minimizes the sum of all line segment lengths

in the matching; by the triangle inequality, no two segments in this matching can

cross. Akiyama and Alon [9] extend this result to arbitrary dimensions: given d sets

of points in d-space, each set containing n points, we can always �nd n pairwise

disjoint simplices, each with one vertex from each set.

The algorithmic problem of �nding such a matching was �rst considered by Atal-

lah [31], who gave an O(n log

2

n) time algorithm for the two-dimensional problem.

Later, Hershberger and Suri [128] were able to obtain an O(n logn) time algorithm

for the same problem; this time bound is also optimal in the algebraic tree model

of computation. Finding a non-intersecting simplex matching in d-dimensions, for

d � 3, remains an open problem.

A minimum-weight matching in the plane is always non-crossing. On the other

hand, a maximum-weight matching generally has many crossing edges. An interest-

ing question is to compute a maximum-weight matching with no crossings. To the

best of our knowledge, no polynomial time algorithm is known for this problem.

Open Problem 18. Given 2n points in general position the plane, �nd a non-

crossing maximum-weight matching.

A very recent result of Alon, Rajagopalan and Suri [14] gives a simple and ef-

�cient approximation algorithm for the above problem. Their algorithm produces

a non-crossing matching of length at least 2=� times the longest matching, and

takes o(n

5=2

logn) time. Alternatively, they can �nd a non-crossing matching of

length at least

2

�

(1 � ") times the optimal in O(n logn=

p

"), for any " > 0. Some-

what surprisingly, Alon et al. [14] show that their approximate matching is within

2=� factor of even the longest crossing matching. Similar results are also obtained

for the non-crossing Hamiltonian path problem and the non-crossing spanning tree

problem.

5.2. Traveling Salesman and Watchman Routes

It is well-known that the traveling salesman problem remains NP -complete even

when restricted to the Euclidean plane [203]. The best heuristics known for approx-

imating a Euclidean TSP are the same that work for graphs whose edge weights

obey the triangle inequality. In particular, a performance ratio of 2 is achieved

by double-traversing the MST, and a ratio of 1.5 is achieved by the heuristic of

Christo�des [61]. It remains an outstanding open problem whether the ratio of 1.5

can be improved for the geometric problem.

Open Problem 19. Give a polynomial time algorithm for approximating the Eu-

clidean TSP of n points with a performance ratio strictly less than 1.5.

Within computational geometry, the TSP has not received much consideration.

A slightly related problem that elicited some interest was the question: Does the



38 J. Mitchell and S. Suri

Delaunay triangulation of a set of points contain its traveling salesman tour? This,

not too surprisingly, was answered negatively, �rst by Kantabutra [145] for degen-

erate set of points, and later by Dillencourt [78] for general-position points. The

question of the \Hamiltonicity" of Delaunay triangulations also arose in the con-

text of pattern recognition and shape representation, in a paper by O'Rourke et

al. [197]. Dillencourt [78] shows that Delaunay triangulation graphs are 1-tough,

1

partly explaining why in many practical cases the triangulations turned out to be

Hamiltonian.

A problem that ties together the traveling salesman type issues with visibility

issues is the watchman route problem. Given a polygonal region of the plane (pos-

sibly with holes), the problem is to compute a shortest cycle such that every point

on the boundary of the region is visible from some point on the cycle. If the region

is the interior of a simple polygon (without holes), and we are given a starting

point through which the route must pass, then Chin and Ntafos [60] give an O(n

4

)

algorithm to compute an optimal route; for orthogonal polygons, the time bound

improves to O(n). Tan, Hirata, and Inagaki [239] have recently given an O(n

3

)

algorithm for �nding an optimal watchman route through a given point in a simple

polygon. However, the problem becomes NP -complete for a polygon with holes or

for a simple three-dimensional polyhedron [59]. Other results on watchman route

type problems can be found in [191, 153, 180, 104].

6. Shape Analysis, Computer Vision, and Pattern Matching

Applications in computer-aided design, machine vision, and pattern matching all

have need to describe, represent, and reason about \shapes". Computational geom-

etry has addressed many questions regarding shapes, such as: How can we compare

two shapes? How can we detect when a shape is present within a digital image?

How can a shape be represented e�ciently in order to expedite basic geometric

queries (such as intersection detection)?

Here, we think of a shape as being the image (\orbit") of some collection of points

(countable or uncountable) under the action of some group of transformations, T

(e.g., translation, rotation, rigid motions, etc.). Thus, a shape may be represented

by a �nite collection of points in d-space, or by a polygon, etc. A shape may be

given to us in any of a number of forms, including a binary array (of \pixels"

that comprise the shape), a discrete set of points, a boundary description of a

solid, a CSG (Constructive Solid Geometry) representation in terms of boolean

set operations on primitive solids (halfspaces), a Binary Space Partition tree, etc.

When we speak of the \complexity" of a shape, we mean the combinatorial size of

its representation (e.g., the number of vertices de�ning the boundary of a polygon).

The �elds of computer vision and pattern matching have motivated the study

of many shape analysis problems in computational geometry over the last decade.

1

A connected graph G is called 1-tough if deletion of any k nodes splits G in to at most k

connected components.



Ch. 1. A Survey of Computational Geometry 39

Early work on shape analysis focussed on the use of planar convex hulls ([39, 243]),

decompositions of simple polygons into convex pieces ([49]), etc.

In the last �ve years, e�ort has concentrated on several problems in shape compar-

ison based on precisely de�ned notions of distance functions and geometric match-

ing. The goal has been to de�ne a meaningful notion of shape resemblance that is

e�ciently computable.

6.1. Shape Comparison

A very natural and general de�nition of shape distance can be based on the Haus-

dor� metric, which we now de�ne precisely. Let A and B denote two given shapes,

and let � 2 T denote a transformation (in group T ), such as translation and/or

rotation, under which we consider shapes to be equivalent. Then, the Hausdor�

distance between shapes A and B is de�ned to be

d

(H)

(A;B) = min

�2T

d

H

(A; � (B));

where d

H

denotes standard Hausdor� distance

d

H

(A;B) = maxfsup

a2A

inf

b2B

�(a; b); sup

b2B

inf

a2A

�(a; b)g;

for some underlying distance function � de�ned on pairs of points.

The problem of computing the Hausdor� distance between sets of points or be-

tween polygons, under various allowed transformations, has been addressed in sev-

eral recent papers [6, 15, 133, 135, 134, 218].

Rote [218] shows that the Hausdor� distance between two sets of points on the

real line can be computed in time O(n logn), and this is best possible. Huttenlocher

and Kedem [133] show how to compute the Hausdor� distance between two sets of

points (of sizes m and n) in the plane under translations � in time O((mn)

2

�(mn)),

where �(�) denotes the inverse Ackermann function. Huttenlocher et al. [135] im-

prove the time bound to O(mn(m+n)�(mn) logmn). They also show how to com-

pute the Hausdor� distance between sets of (disjoint) line segments (under trans-

lation) in time O((mn)

2

logmn), assuming the underlying metric � is L

1

or L

1

.

Chew and Kedem [58] have recently shown that the Hausdor� distance between two

point sets can be computed in time O(n

2

log

2

n), assuming the underlying metric �

is L

1

or L

1

.

Alt, Behrends, and Bl�omer [15] study the problem of computing Hausdor� dis-

tance between simple polygons in the plane, under a variety of possible trans-

formations � with underlying metric � = L

2

. They give an O(n logn) algorithm

for computing Hausdor� distance between two simple polygons (without transfor-

mation), an O((mn)

3

(m + n) log(m + n)) algorithm for Hausdor� distance under

translation, several algorithms with high-degree polynomial time bounds for various

types of transformations, and approximate algorithms for these cases that require

time O(nm log

2

nm).



40 J. Mitchell and S. Suri

Agarwal, Sharir, and Toledo [6] show how parametric search can be used to

improve the complexity to O((mn)

2

log

3

(mn)) for the case of comparing two simple

polygons under translation (and � = L

2

).

Most recently, Huttenlocher, Kedem, and Kleinberg [134] examine the case of

rigid body motions (translation and rotation) of point sets in the plane, and obtain

an algorithm with time complexity of O((m + n)

6

log(mn)).

One drawback of the Hausdor� metric for shape comparison is that it measures

only the \outliers" | points that are worst-case.

The polygon metric de�ned by Arkin et al. [19] avoids some of the problems

associated with the Hausdor� metric. Basically, [19] give an e�cient (O(n

2

logn))

means of computing the (L

2

) distance between the \turning functions" of two sim-

ple polygons (scaled to have the same perimeter), under all possible shifts of the

origins of the parameterizations. (The turning function of a polygon measures the

accumulated angle of the counterclockwise tangent as a function of the arc-length,

starting from some reference point on the boundary.) Rote [219] has suggested the

use of the bounded Lipschitz norm for comparing two single-variable functions (e.g.,

turning functions), and gives an O(n logn) time method to compute it. The metrics

given by [19, 219] have the disadvantage of not applying as generally as does the

Hausdor�; for example, neither metric extends readily to the case of polygons with

holes or to higher dimensions.

Alt and Godau [16] study the so-called Fr�echet-Metric between curves, and give

an O(mn) algorithm to decide if the Fr�echet distance between two �xed polygonal

chains (of sizes m and n) is less than a given � > 0, and, using this with para-

metric search, they compute the Fr�echet distance between two �xed chains in time

O(mn log

2

mn). They do not optimize over a transformation group; it would be

interesting to devise an e�cient method to do so.

6.2. Point Pattern Matching

A special case of the shape comparison problem is that of matching two discrete

sets of points: Find a transformation of a set of points B that makes it \match"

most closely a set of points A. Matching problems are present throughout the

computer vision literature, since their solution forms a fundamental component in

many object recognition systems (e.g., see [132]).

More precisely, the point matching problem in computer vision can be stated as

follows: Given a set of n image points A = fa

1

; : : : ; a

n

g � IR

d

and a set of m model

points B = fb

1

; : : : ; b

m

g � IR

d

0

, determine a matching � (i.e., a list of pairs (a

i

; b

j

)

such that no two pairs share the same �rst element or the same second element)

and a transformation � : IR

d

! IR

d

0

, within an allowable class of transformations

T , such that the application of � to point a

i

brings it into \correspondence" to

point b

j

, for each pair (a

i

; b

j

) 2 �. The \value" of a matching can be taken to be

the number of pairs (a

i

; b

j

), or possibly a sum of weights.

The term \correspondence" can take on several di�erent meanings. In the exact

point matching problem (also known as the \image registration problem"), we re-



Ch. 1. A Survey of Computational Geometry 41

quire that � (a

i

) = b

j

for every pair (a

i

; b

j

) 2 � of the matching. In the inexact

point matching problem (also known as the \approximate congruence problem"),

we only require that � (a

i

) be close to b

j

, for each (a

i

; b

j

) 2 �. A natural de�nition

of closeness is to de�ne for each model point b

j

, a \noise region" B

j

, and to say

that � (a

i

) is \close" to b

j

if � (a

i

) 2 B

j

. We let R = fB

1

; : : : ; B

m

g denote the set

of noise regions. Refer to Figure 6.2.

R

A

1

Fig. 6.2.1. A point matching problem

The exact point matching problem has been solved in time O(n

d�2

logn) for

d = d

0

and T the set of congruences (translations and rotations) (see [17]).

Baird [34] formalizes the inexact point matching problem and provides algorithms

for the case of similarity transformations and convex polygonal noise regions; his

algorithms are worst-case exponential, and he leaves open the question of solving

the problem in polynomial time. This open question is resolved in the work of

Alt et al [17] and the work of Arkin et al. [23], where it is shown that many

versions of the inexact matching problem can be solved in polynomial time, for

various assumptions about the allowed transformations and the shapes of the noise

regions. Arkin et al. also give lower bounds on the number of possible matches

and generalize the problem to allow arbitrary piecewise-linear cost functions for

the matching. Arkin et al. [20] give improved algorithms and combinatorial bounds

on the number of matches for several special cases of the inexact point matching

problem in which the noise regions are assumed to be disjoint.

A major obstacle to making the existing methods of point matching practical

is the very high degree polynomial time bounds. For example, even for the case

of point matching under translation, the algorithm of [17] requires time O(n

6

).

One possible direction for an improvement has been suggested by He�ernan and

Schirra [121], who show one can get low-degree polynomials (in n) if one allows an

approximate decision procedure, which is allowed to give an \I don't know" answer

in response to situations in which the data is particularly \bad".



42 J. Mitchell and S. Suri

Zikan [263] and Aurenhammer et al. [33] have studied problems in which the

objective function is based on least-squares.

6.3. Shape Approximation

A requirement for any system that analyzes physical models is the representation

of geometric data, such as points, polygons, polyhedra, and general solids. One

would like to have as compact a representation as possible, while still capturing

the degree of precision required by the problem at hand. In particular, this issue is

important for real-time systems whose algorithms have running times that depend

on the size of the data according to some high degree polynomial (e.g., vision

systems, motion planning systems, etc.).

For example, cartographers are interested in the question of approximating gen-

eral planar objects, such as polygons with holes, sets of polygons, or general planar

maps. A geographic terrain map may have millions of polygonal cells, some of which

are large and open, others of which are tiny or quite contorted. Such would be the

case if we were to look at an agricultural use map of the United States or at a

segmentation of a digitized image. But, if we were to put on a pair of \�-blurring

eyeglasses", what we would see in such a map is a subdivision with a few \large"

(in comparison with �) cells, and blurred \gray masses" where the cell structure is

quite �ne (in comparison with �). Refer to Figure 6.3.1. We would like to replace

the original subdivision with a new one of lower resolution (or perhaps a hierarchy

of many di�erent resolutions).

A standard approach to the map simpli�cation problem is to take each polygonal

curve that de�nes a boundary in the map and replace it by a simpler one, sub-

ject to the new curve being \close" to the original curve. Cartographers have been

interested in this \line simpli�cation problem" for some time ([80, 168]). Compu-

tational geometers have de�ned and solved several instances of the problem; see

[115, 127, 138{140, 169]. The general method has been to model the problem as an

\ordered stabbing" question, in which one wants to pass a polygonal curve through

an ordered set of \fattened" boundary elements (e.g., disks centered on vertices)

from the original curve.

Guibas et al. [115] have noted that simplifying each boundary curve of a map

individually can cause all kinds of topological inconsistencies, such as islands be-

coming inland, intersections among boundaries that were previously disjoint, etc.

Even the special case of the cartographer's problem in which one wants to ap-

proximate a single simple polygon, P , su�ers from the potential problem that the

approximating curve is not simple.

In particular, consider an \�-fattening" of the boundary of P to be the set of all

(\gray") points within distance � of the boundary of P . The boundary of the gray

region can be computed in time O(n logn) by �nding the Voronoi diagram of P . If

the fattened gray region is an annulus, then we are lucky: The minimum-link cycle

algorithms of Aggarwal et al. [7], Wang and Chan [251], or Ghosh et al. [105] can

be applied to give an exact answer to the problem in O(n logn) or O(n) time. For



Ch. 1. A Survey of Computational Geometry 43

1

Fig. 6.3.1. The original map (top) and its simpli�cation (bottom).



44 J. Mitchell and S. Suri

larger values of �, however, the fattening may create more holes, in which case, one

wants a minimum-vertex simple polygon surrounding all the holes of the fattened

region. Guibas et al. [115] give an O(n logn) time algorithm to compute a simple

polygon with at most O(h) vertices more than optimal, where h is the number of

holes in the fattening; they conjecture that the exact solution of the problem is

NP-hard.

Mitchell and Suri [179] have studied a related problem of �nding a minimum-

link subdivision that separates a given set of polygons. They give an O(n logn)

time algorithm, based on computing minimum-link paths in the \moats" between

polygons, that produces an approximating subdivision (or a separating family) that

is guaranteed to be within a constant factor of optimality. The exact solution of

the problem has been shown to be NP-hard by Das and Joseph [70].

Polyhedral Separation/Approximation

The generalization of the boundary approximation problem to three dimensions

is of primary importance for any real CAD applications. If we are given a polyhedral

surface, how can we approximate it with a signi�cantly simpler polyhedral surface?

One approach is to \�-fatten" the original surface and then look at simplifying

surfaces that lie within the fattened region. Thus, we ask the following polyhedral

separation question: Given two polyhedral surfaces, P and Q, �nd a polyhedral

surface � of minimum facet complexity that separates P from Q.

Das and Joseph [68, 70, 69] have shown that this problem is NP-hard, even

for convex surfaces P and Q. Mitchell and Suri [179] have shown that if P and

Q are convex, one can, in time O(n

3

), compute a separating surface whose facet

complexity is guaranteed to be within a small, logarithmic, factor of the size of an

optimal separator. While the preliminary results of [179] are interesting as a �rst

step, many questions remain to be addressed, particularly with respect to nonconvex

surfaces.

Open Problem 20. Given two nonconvex polyhedra P and Q, with a total of n

faces, �nd a polyhedral surface of f(n) faces that separates P from Q such that f(n)

is within a small factor of the optimal.

7. Conclusion

In this survey, we touched upon some of the major problem areas and techniques

of computational geometry. Our emphasis was on optimization problems that should

be of most interest to the Operations Research community. We certainly have not

done justice to the �eld of computational geometry as a whole, and have left out

entire subareas of intense research. But we hope to have supplied su�cient pointers

to the literature that an interested reader can track down more detailed information

on any particular subtopic.

Computational geometry is a very young discipline, and while it has matured

extremely rapidly in the last ten years, we expect a steady stream of new results to



Ch. 1. A Survey of Computational Geometry 45

continue. Particularly, as the interaction between more applied �elds and compu-

tational geometry grows, entire new lines of investigation are expected to evolve.

8. Acknowledgement

We thank Joseph O'Rourke and Godfried Toussaint for several helpful comments

that have improved the presentation of this survey.

References

[1] P. K. Agarwal, B. Aronov, J. O'Rourke, and C. Schevon. Star unfolding of a polytope with

applications. In J. R. Gilbert and R. Karlsson, editors,Proc. of 2nd Scandanavian Workshop

on Algorithm Theory, pages 251{263. Springer-Verlag, July 1990. LectureNotes in Computer

Science, Vol. 447.

[2] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum span-

ning trees and bichromatic closest pairs. Discrete Comput. Geom., 6:407{422, 1991.

[3] P. K. Agarwal and J. Matou�sek. Relative neighborhood graphs in three dimensions. In Proc.

3rd ACM-SIAM Sympos. Discrete Algorithms, pages 58{65, 1992.

[4] P. K. Agarwal, J. Matou�sek, and S. Suri. Farthest neighbors, maximum spanning trees and

related problems in higher dimensions. Computational Geometry: Theory and Applications,

1, pp. 189{201, 1992.

[5] P. K. Agarwal and M. Sharir. Planar geometric location problems and maintaining the width

of a planar set. In Proc. 2nd ACM-SIAM Sympos. Discrete Algorithms, pages 449{458, 1991.

[6] P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric

optimization. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 72{82, 1992.

[7] A. Aggarwal, H. Booth, J. O'Rourke, S. Suri, and C. K. Yap. Findingminimal convex nested

polygons. Inform. Comput., 83(1):98{110, October 1989.

[8] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing

the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4:591{604, 1989.

[9] J. Akiyama and N. Alon. Disjoint simplices and geometric hypergraphs. Annals New York

Academy of Science, pages 1{3, 1989.

[10] S. Akl. A note on Euclidean matchings, triangulations and spanning trees. J. of Combna-

torics, Information and System Sciences, pages 169{174, 1983.

[11] R. Alexander. Construction of optimal-path maps for homogeneous-cost-region path-

planning problems. Ph.D. Thesis, Computer Science, U.S. Naval Postgraduate School, Mon-

terey, CA, 1989.

[12] R. Alexander and N. Rowe. Geometrical principles for path planning by optimal-path-map

construction for linear and polygonal homogeneous-region terrain. Technical report, Com-

puter Science, U.S. Naval Postgraduate School, Monterey, CA, 1989.

[13] R. Alexander and N. Rowe. Path planning by optimal-path-map construction for

homogeneous-cost two-dimensional regions. In IEEE Int. Conf. Robotics and Automation,

1990.

[14] N. Alon, S. Rajagopalan and S. Suri. Long Non-Crossing Con�gurations in the Plane. Tech-

nical Report, Bell Communications Research, 1992.

[15] H. Alt, B. Behrends, and J. Bl�omer. Approximate matching of polygonal shapes. In Proc.

7th Annu. ACM Sympos. Comput. Geom., pages 186{193, 1991.

[16] H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Proc. 8th Annu.

ACM Sympos. Comput. Geom., pages 102{109, 1992.

[17] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and symmetries of

geometric objects. Discrete Comput. Geom., 3:237{256, 1988.



46 J. Mitchell and S. Suri

[18] H. Alt and E. Welzl. Visibility graphs and obstacle-avoiding shortest paths. Zeitschrift f�ur

Operations Research, 32:145{164, 1988.

[19] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An ef-

�ciently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal.

Mach. Intell., 13(3):138{148, 1991.

[20] E. M. Arkin, K. Kedem, J. S. B. Mitchell, J. Sprinzak, and M. Werman. Matching points

into pairwise-disjoint noise regions: combinatorial bounds and algorithms. ORSA Journal

on Computing, 4(4):375{386, 1992.

[21] E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko. Bicriteria shortest path problems in the

plane. In Proc. 3rd Canad. Conf. Comput. Geom., pages 153{156, 1991.

[22] E. M. Arkin, J. S. B. Mitchell, and S. Suri. Optimal link path queries in a simple polygon.

In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 269{279, 1992.

[23] E. M. Arkin, J. S. B. Mitchell, and K. Zikan. Algorithms for point matching problems.

Manuscript, School Oper. Res. Indust. Engrg., Cornell Univ., Ithaca, NY, 1989.

[24] B. Aronov. On the geodesicVoronoi diagramof point sites in a simple polygon.Algorithmica,

4:109{140, 1989.

[25] B. Aronov, H. Edelsbrunner, L. Guibas, and M. Sharir. Improved bounds on the complexity

of many faces in arrangements of segments. Report 459, Dept. Comput. Sci., New York

Univ., New York, NY, July 1989.

[26] B. Aronov, S. J. Fortune, and G. Wilfong. The furthest-site geodesic Voronoi diagram. In

Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 229{240, 1988.

[27] B. Aronov, J. Matou�sek, and M. Sharir. On the sum of squares of cell complexities in

hyperplane arrangements. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 307{

313, 1991.

[28] B. Aronov and J. O'Rourke. Nonoverlap of the star unfolding. In Proc. 7th Annu. ACM

Sympos. Comput. Geom., pages 105{114, 1991.

[29] Ta. Asano, Te. Asano, L. J. Guibas, J. Hershberger, and H. Imai. Visibility of disjoint

polygons. Algorithmica, 1:49{63, 1986.

[30] Te. Asano, B. Bhattacharya, J. M. Keil, and F. Yao. Clustering algorithms based on mini-

mum and maximum spanning trees. In Proc. 4th Annu. ACM Sympos. Comput. Geom.,

pages 252{257, 1988.

[31] M. Atallah. A matching problem in the plane. Journal of Computer and System Sciences,

31:63{70, 1985.

[32] F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data structure.

ACM Comput. Surv., 23:345{405, 1991.

[33] F. Aurenhammer, F. Ho�mann, and B. Aronov. Minkowski-type theorems and least-squares

partitioning. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 350{357, 1992.

[34] H.S. Baird.Model-Based Image Matching Using Location. DistinguishedDissertation Series.

MIT Press, 1984.

[35] E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. On-line navigation in a room. In Proc. 3rd

ACM-SIAM Sympos. Discrete Algorithms, pages 237{249, Orlando, FL, 1992.

[36] J. J. Bartholdi, III and L. K. Platzman. A fast heuristic based on space�lling curves for

minimum-weight matching in the plane. Inform. Process. Lett., 17:177{180, 1983.

[37] R. Bar-Yehuda and B. Chazelle. Triangulating a set of non-intersectingand simple polygonal

chains. Manuscript, Computer Science, Tel-Aviv University, 1992.

[38] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM Sym-

pos. Theory Comput., pages 80{86, 1983.

[39] B. K. Bhattacharya. Applications of computational geometry to pattern recognition prob-

lems. Ph.D. Thesis, School Comput. Sci., McGill Univ., Montreal, PQ, 1980.

[40] B. K. Bhattacharya and G. T. Toussaint. On geometric algorithms that use the furthest-

point Voronoi diagram. In G. T. Toussaint, editor, Computational Geometry, pages 43{61.

North-Holland, Amsterdam, Netherlands, 1985.

[41] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain. In Proc.



Ch. 1. A Survey of Computational Geometry 47

23rd Annu. ACM Sympos. Theory Comput., pages 494{503, 1991.

[42] K. Q. Brown. Geometric transforms for fast geometric algorithms. Ph.D. Thesis and Report

CMU-CS-80-101, Dept. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, 1980.

[43] J. Canny. The complexity of robot motion planning. Ph.D. Thesis, Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, 1987.

[44] J. Canny, B. R. Donald, J. Reif, and P. Xavier. On the complexity of kinodynamic planning.

In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pages 306{316, 1988.

[45] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the plane.

Discrete Comput. Geom., 6:461{484, 1991.

[46] J. Canny and J. H. Reif. New lower bound techinques for robot motion planning problems.

In Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., pages 49{60, 1987.

[47] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. J. ACM, 17:78{86, 1970.

[48] B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu. IEEE

Sympos. Found. Comput. Sci., pages 339{349, 1982.

[49] B. Chazelle. Approximation and decomposition of shapes. In Advances in Robotics 1: Algo-

rithmic and Geometric Aspects of Robotics, pages 145{185, J. T. Schwartz and C.-K. Yap,

editors. Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

[50] B. Chazelle. An optimal convex hull algorithm and new results on cuttings. In Proc. 32nd

Annu. IEEE Sympos. Found. Comput. Sci., pages 29{38, 1991.

[51] B. Chazelle. Triangulating a simple polygon in linear time.Discrete Comput. Geom., 6:485{

524, 1991.

[52] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the

plane. J. ACM, 39:1{54, 1992.

[53] B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in ge-

ometry. Combinatorica, 10:229{249, 1990.

[54] B. Chazelle and J. Matou�sek. Derandomizing an output-sensitive convex hull algorithm in

three dimensions. Technical report, Dept. Comput. Sci., Princeton Univ., 1992.

[55] J. Chen and Y. Han. Shortest paths on a polyhedron. In Proc. 6th Annu. ACM Sympos.

Comput. Geom., pages 360{369, 1990.

[56] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J. of Computing,

5:724{742, 1976.

[57] L. P. Chew. Planning the shortest path for a disc in O(n

2

logn) time. In Proc. 1st Annu.

ACM Sympos. Comput. Geom., pages 214{220, 1985.

[58] L. P. Chew and K. Kedem. Improvements on approximate pattern matching problems. To

appear in Proc. 3rd Scand. Workshop Algorithm Theory, volume ?? of Lecture Notes in

Computer Science, pages ??{?? Springer-Verlag, 1992.

[59] W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39{44, 1988.

[60] W.-P. Chin and S. Ntafos. Watchman routes in simple polygons. Discrete Comput. Geom.,

6(1):9{31, 1991.

[61] N. Christo�des. Worst-case analysis of a new heuristic for the traveling salesman problem.

In J. F. Traub, editor, Sympos. on New Directions and Recent Results in Algorithms and

Complexity, New York, NY, 1976. Academic Press.

[62] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th

Annu. ACM Sympos. Theory Comput., pages 55{65, 1987.

[63] K. L. Clarkson. New applications of random sampling in computational geometry. Discrete

Comput. Geom., 2:195{222, 1987.

[64] K. L. Clarkson, S. Kapoor, and P. M. Vaidya. Rectilinear shortest paths through polygonal

obstacles in O(n(logn)

2

) time. In Proc. 3rd Annu. ACM Sympos. Comput. Geom., pages

251{257, 1987.

[65] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,

II. Discrete Comput. Geom., 4:387{421, 1989.

[66] R. Cole and A. Siegel. River routing every which way but loose. In Proc. 25th Annu. IEEE

Sympos. Found. Comput. Sci., pages 65{73, 1984.



48 J. Mitchell and S. Suri

[67] G. E. Collins. Quanti�er elimination for real closed �elds by cylindric algebraic decomposi-

tion. In Proc. Second GI Conference on Automata Theory and Formal Languages, volume 33

of Lecture Notes in Computer Science, pages 134{183, Berlin, 1975. Springer-Verlag.

[68] G. Das. Approximation schemes in computational geometry. Ph.D. Thesis, University of

Wisconsin, 1990.

[69] G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In Proc. 2nd

Canad. Conf. Comput. Geom., pages 296{301, 1990.

[70] G. Das and D. Joseph. Minimum vertex hulls for polyhedral domains. In Proc. 7th Sympos.

Theoret. Aspects Comput. Sci., Lecture Notes in Computer Science. Springer-Verlag, 1990.

[71] A. Datta and K. Krithivasan. Path planning with local information. In Proc. Foundations of

Software Technology and Theoretical Computer Science, New Delhi, India, December 1988.

[72] M. de Berg. On rectilinear link distance. Comput. Geom. Theory Appl., 1:13{34, 1991.

[73] M. de Berg, M. van Kreveld, and B. J. Nilsson. Shortest path queries in rectilinear worlds

of higher dimension. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 51{60, 1991.

[74] M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Finding shortest paths in

the presence of orthogonal obstacles using a combined L

1

and link metric. Technical report,

1990.

[75] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment. In

Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 298{303, 1991.

[76] L. Devroye and G. T. Toussaint. A note on linear expected time algorithm for �nding convex

hulls. Computing , Vol. 26, pp. 361{366, 1981.

[77] E. W. Dijkstra. A note on two problems in connexionwith graphs. Numerische Mathematik,

1:269{271, 1959.

[78] M. B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay triangulation. Information

Processing Letters, 25:149{151, 1987.

[79] H. N. Djidjev, A. Lingas, and J. Sack. An O(n logn) algorithm for computing the link center

of a simple polygon. Discrete Comput. Geom., To appear, 1992.

[80] D. H. Douglas and T.K. Peuker. Algorithms for the reduction of the number of points

required to represent a line or its caricature. The Canadian Cartographer, 10(2):112{122,

1973.

[81] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan. Relaxed heaps: An alternative

to Fibonacci heaps with applications to parallel computation. Commun. ACM, 31:1343{

1354, 1988.

[82] R. A. Dwyer. A faster divide-and-conquer algorithm for constructing Delaunay triangula-

tions. Algorithmica, 2:137{151, 1987.

[83] R. A. Dwyer. Average-case analysis of algorithms for convex hulls and Voronoi diagrams.

Ph.D. Thesis, Carnegie-Mellon University, 1988.

[84] M. E. Dyer and A. M. Frieze. A partitioning algorithm for minimum weighted Euclidean

matching. Inform. Process. Lett., 18:59{62, 1984.

[85] P. Eades, X. Lin, and N. C. Wormald. Performance guarantees for motion planning with

temporal uncertainty. Technical report, Dept. of Computer Science, Univ. of Queensland,

St. Lucia, Queensland, 1989.

[86] H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Ger-

many, 1987.

[87] H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity of many cells in arrangements

of planes and related problems. Discrete Comput. Geom., 5:197{216, 1990.

[88] H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangement. J. Comput. Syst.

Sci, 38:165{194, 1989. Corrigendum in 42(1991)249{251.

[89] H. Edelsbrunner, L. J. Guibas, and M. Sharir. The complexity and construction of many

faces in arrangements of lines and of segments. Discrete Comput. Geom., 5:161{196, 1990.

[90] H. Edelsbrunner, L. J. Guibas, and J. Stol�. Optimal point location in a monotone subdi-

vision. SIAM J. Comput., 15:317{340, 1986.

[91] H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hy-



Ch. 1. A Survey of Computational Geometry 49

perplanes with applications. SIAM J. Comput., 15:341{363, 1986.

[92] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete Comput.

Geom., 1:25{44, 1986.

[93] H. Edelsbrunner and E. Welzl. On the maximal number of edges of many faces in an ar-

rangement. J. Combin. Theory Ser. A, 41:159{166, 1986.

[94] J. Edmonds. Maximum matching and a polyhedron with 0; 1 vertices. J. of Research NBS,

69B:125{130, 1965.

[95] H. ElGindy and M. T. Goodrich. Parallel algorithms for shortest path problems in polygons.

Visual Comput., 3:371{378, 1988.

[96] S. Fortune andG. Wilfong. Planning constrainedmotion. InProc. 20th Annu. ACM Sympos.

Theory Comput., pages 445{459, 1988.

[97] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153{174, 1987.

[98] M. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-

mization problems. JACM, 34:596{615, 1987.

[99] H. Gabow. Data structures for weighted matching and nearest common ancestors with link-

ing. In Proc. of First ACM-SIAM Symposium on Discrete Algorithms, pages 434{443, 1990.

[100] H. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. E�cient algorithms for �nding minimum

spanning trees in undirected and directed graphs. Combinatorica, 6:109{122, 1986.

[101] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis.

Systematic Zoology, 18:259{278, 1969.

[102] S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, W. R�ulling, and C. Storb. On continuous

homotopic one layer routing. In Computational Geometry and its Applications, volume 333

of Lecture Notes in Computer Science, pages 55{70. Springer-Verlag, 1988.

[103] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP -Completeness. W. H. Freeman, New York, NY, 1979.

[104] L. Gewali, A. Meng, J. S. B. Mitchell, and S. Ntafos. Path planning in 0=1=1 weighted

regions with applications.ORSA J. Comput., 2(3):253{272, 1990.

[105] S. K. Ghosh and A. Maheshwari. An optimal algorithm for computing a minimum nested

nonconvex polygon. Technical Report CS-90/2, Tata Inst., 1990.

[106] S. K. Ghosh and D.M. Mount. An output-sensitivealgorithmfor computingvisibilitygraphs.

SIAM J. Comput., 20:888{910, 1991.

[107] M. Golin and R. Sedgewick. Analysis of a simple yet e�cient convex hull algorithm. In Proc.

of 4th Annual Sympoisum on Computational Geometry, pp. 153{163, 1988.

[108] M. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. In Proc. 23rd

Annu. ACM Sympos. Theory Comput., pages 523{533, 1991.

[109] M. T. Goodrich, S. B. Shauck, and S. Guha. Parallel methods for visibility and shortest path

problems in simple polygons. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 73{

82, 1990.

[110] R. L. Graham. An e�cient algorithm for determining the convex hull of a �nite planar set.

Inform. Process. Lett., 1:132{133, 1972.

[111] R. L. Graham and P. Hell. On the history of minimum spanning tree problem. Annals of

History of Computing, 7:43{57, 1985.

[112] B. Gr�unbaum. Convex Polytopes. Wiley, New York, NY, 1967.

[113] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J.

Comput. Syst. Sci., 39:126{152, 1989.

[114] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms

for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,

2:209{233, 1987.

[115] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating

polygons and subdivisions with minimum link paths. In Proc. 2nd Annu. SIGAL Internat.

Sympos. Algorithms, volume 557 of Lecture Notes in Computer Science, pages 151{162.

Springer-Verlag, 1991.

[116] L. J. Guibas, D. E. Knuth, andM. Sharir. Randomized incremental constructionof Delaunay



50 J. Mitchell and S. Suri

and Voronoi diagrams. Algorithmica, 7:381{413, 1992.

[117] L. J. Guibas and J. Stol�. Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams. ACM Trans. Graph., 4:74{123, 1985.

[118] G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path problem.

Networks, 10:293{310, 1980.

[119] Xin He. An e�cient parallel algorithm for �nding minimum weight matching for points on

a convex polygon. Inform. Process. Lett., 37(2):111{116, 1991.

[120] P. J. He�ernan and J. S. B. Mitchell. An optimal algorithm for computing visibility in the

plane. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in

Computer Science, pages 437{448. Springer-Verlag, 1991.

[121] P. J. He�ernan and S. Schirra. Approximate decision algorithms for point set congruence.

In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 93{101, 1992.

[122] M.I. Henig. The shortest path problem with two objective functions. European J. of Oper-

ational Research, 25:281{291, 1985.

[123] J. Hershberger. Minimizing the sum of diameters e�ciently. In Proc. 3rd Canad. Conf.

Comput. Geom., pages 62{65, 1991.

[124] J. Hershberger. Optimal parallel algorithms for triangulated simple polygons. In Proc. 8th

Annu. ACM Sympos. Comput. Geom., pages 33{42, 1992.

[125] J. Hershberger and L. J. Guibas. AnO(n

2

) shortest path algorithm for a non-rotating convex

body. J. Algorithms, 9:18{46, 1988.

[126] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy

class. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in

Computer Science, pages 331{342. Springer-Verlag, 1991.

[127] J. Hershberger and J. Snoeyink. An implementation of the Douglas-Peucker line simpli�ca-

tion algorithm using at most cn logn operations. Technical report, 1991.

[128] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm.BIT , 32,

pp. 249{267, 1992.

[129] J. Hershberger and S. Suri. Finding tailored partitions. J. Algorithms, 12:431{463, 1991.

[130] J. E. Hopcroft, D. A. Joseph, and S. H. Whitesides. Movement problems for 2-dimensional

linkages. SIAM J. Comput., 13:610{629, 1984.

[131] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. Planning, Geometry, and Complexity of

Robot Motion. Ablex Publishing, Norwood, NJ, 1987.

[132] D. P. Huttenlocher. Three-dimensional recognition of solid objects from a two-dimensional

image. Ph.D. Thesis and Report TR-1045, Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1988.

[133] D. P. Huttenlocher and K. Kedem. Computing the minimum Hausdor� distance for point

sets under translation. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 340{349,

1990.

[134] D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams and the

minimum Hausdor� distance for point sets under Euclidean motion in the plane. Technical

Report TR 92-1271, Dept. Comput. Sci., Cornell Univ., Ithaca, NY, March 1992.

[135] D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces and

its applications. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 194{203, 1991.

[136] Y.-H. Hwang, R.-C. Chang, and H.-Y. Tu. Finding all shortest path edge sequences on a

convex polyhedron. In Proc. 1st Workshop Algorithms Data Struct., volume 382 of Lecture

Notes in Computer Science, pages 251{266. Springer-Verlag, 1989.

[137] C. Icking,G. Rote, E. Welzl, and C. Yap. Shortest paths for line segments. Technical Report,

Fachbereich Mathematik, Freie Universit�at, Berlin, 1989.

[138] H. Imai and M. Iri. Computational-geometric methods for polygonal approximations of a

curve. Computer Vision, Graphics, and Image Processing, 36:31{41, 1986.

[139] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function.

Journal of Information Processing, 9(3):159{162, 1986.

[140] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In



Ch. 1. A Survey of Computational Geometry 51

G. T. Toussaint, editor, Computational Morphology, pages 71{86. North-Holland, Amster-

dam, Netherlands, 1988.

[141] S. Sitharama Iyengar and Alberto Elfes, editors. Autonomous Mobile Robots: Perception,

Mapping, and Navigation. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[142] J. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives. Pro-

ceedings of IEEE, Special Issue on Computational Geometry, 1992.

[143] R. A. Jarvis. On the identi�cation of the convex hull of a �nite set of points in the plane.

Inform. Process. Lett., 2:18{21, 1973.

[144] M. Kallay. The complexity of incremental convex hull algorithms in R

d

. Inform. Process.

Lett., 19:197, 1984.

[145] V. Kantabutra. Traveling salesman cycles are not always subgraphs of Voronoi duals. Infor-

mation Processing Letters, 16:11{12, 1983.

[146] S. Kapoor and S. N. Maheshwari. E�cient algorithms for Euclidean shortest path and

visibility problems with polygonal obstacles. In Proc. 4th Annu. ACM Sympos. Comput.

Geom., pages 172{182, 1988.

[147] Y. Ke. An e�cient algorithm for link-distance problems. In Proc. 5th Annu. ACM Sympos.

Comput. Geom., pages 69{78, 1989.

[148] M. Kindl, M. Shing, and N. Rowe. A stochastic approach to the weighted-region problem: I.

the design of the path annealing algorithm. Technical report, Computer Science, U.S. Naval

Postgraduate School, Monterey, CA, 1991.

[149] M. Kindl, M. Shing, and N. Rowe. A stochastic approach to the weighted-region problem: Ii.

performance enhancement techniques and experimental results. Technical report, Computer

Science, U.S. Naval Postgraduate School, Monterey, CA, 1991.

[150] D. G. Kirkpatrick.Optimal search in planar subdivisions.SIAM J. Comput., 12:28{35, 1983.

[151] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J.

Comput., 15:287{299, 1986.

[152] R. Klein. Walking an unknown street with bounded detour. In Proc. 32nd Annu. IEEE

Sympos. Found. Comput. Sci., pages 304{313, 1991.

[153] E. Kranakis, D. Krizanc, and L. Meertens. Link length of rectilinear watchman tours in

grids. In Proc. 2nd Canad. Conf. Comput. Geom., pages 328{331, 1990.

[154] J. B. Kruskal. On the shortest spanning tree of a graph and the traveling salesman problem.

Proc. of American Math. Soc., 7:48{50, 1956.

[155] L. C. Larson. Problem-Solving Through Problems. Springer Verlag, New York, 1983.

[156] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[157] J. Laumond. Feasible trajectories for mobile robots with kinematic and environment con-

straints. Intelligent Autonomous Systems, ??:346{354, 1986.

[158] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. New York: Holt, Rine-

hart and Winston, 1976.

[159] D. T. Lee. Proximity and reachability in the plane. Report R-831, Dept. Elect. Engrg., Univ.

Illinois, Urbana, IL, 1978.

[160] D. T. Lee and F. P. Preparata.Euclidean shortest paths in the presenceof rectilinearbarriers.

Networks, 14:393{410, 1984.

[161] C. E. Leiserson and F. M. Maley. Algorithms for routing and testing routability of planar

vlsi layouts. In Proc. 17th Annu. ACM Sympos. Theory Comput., pages 69{78, 1985.

[162] W. Lenhart, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G. T. Toussaint, S. White-

sides, and C. K. Yap. Computing the link center of a simple polygon. Discrete Comput.

Geom., 3:281{293, 1988.

[163] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM J. Comput.,

9:615{627, 1980.

[164] V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403{430, 1987.

[165] O. Marcotte and S. Suri. Fast matching algorithms for points on a polygon. SIAM J. Com-

put., 20:405{422, 1991.



52 J. Mitchell and S. Suri

[166] J. Matou�sek, N. Miller, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine

linearly many holes. In Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 49{58,

1991.

[167] D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation

research and clustering of points in the plane. Geogr. Anal., 12:205{222, 1980.

[168] R.B. McMaster. Automated line generation. Cartographica, 24(2):74{111, 1987.

[169] A. Melkman and J. O'Rourke. On polygonal chain approximation. In G. T. Toussaint, editor,

Computational Morphology, pages 87{95. North-Holland, Amsterdam, Netherlands, 1988.

[170] J. Mitchell and E. Welzl. Dynamicallymaintaining a visibility graph under insertions of new

obstacles. Manuscript, School Oper. Res. Indust. Engrg., Cornell Univ., Ithaca, NY, 1990.

[171] J. S. B. Mitchell. Planning shortest paths. Ph.D. Thesis, Stanford Univ., Stanford, CA, 1986.

[172] J. S. B. Mitchell. Algorithmic approaches to optimal route planning. In Proc. SPIE Confer-

ence on Mobile Robots, Boston, MA, 4-9 November 1990.

[173] J. S. B. Mitchell. On maximum 
ows in polyhedral domains. J. Comput. Syst. Sci., 40:88{

123, 1990.

[174] J. S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Annals

of Math. and Arti�cial Intelligence, 3:83{106, 1991.

[175] J. S. B. Mitchell. L

1

shortest paths among polygonal obstacles in the plane. Algorithmica,

8:55{88, 1992.

[176] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem.

SIAM J. Comput., 16:647{668, 1987.

[177] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: �nding shortest

paths through a weighted planar subdivision. J. ACM, 38:18{73, 1991.

[178] J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles in the

plane. Algorithmica, 8:431{459, 1992.

[179] J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral surfaces. In Proc.

3rd ACM-SIAM Sympos. Discrete Algorithms, pages 296{306, 1992.

[180] J. S. B. Mitchell and E. L. Wynters. Watchman routes for multiple guards. In Proc. 3rd

Canad. Conf. Comput. Geom., pages 126{129, 1991.

[181] J.S.B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles.

Manuscript, School Oper. Res. Indust. Engrg., Cornell Univ., Ithaca, NY, 1989.

[182] J.S.B. Mitchell and C. Piatko. Approximation methods for link distances in higher dimen-

sions. Manuscript, School Oper. Res. Indust. Engrg., Cornell Univ., Ithaca, NY, 1992.

[183] J.S.B. Mitchell, C.D. Piatko, and E.M. Arkin. Computing a shortest k-link path in a simple

polygon. In Proc. 33rd Annu. IEEE Sympos. Found. Comput. Sci., pages 573{582, 1992.

[184] C. Monma, M. Paterson, S. Suri, and F. Yao. Computing Euclidean maximum spanning

trees. Algorithmica, 5:407{419, 1990.

[185] C. Monma and S. Suri. Partitioning points and graphs to minimize the maximum or the

sum of diameters. In Graph Theory, Combinatorics and Applications (Proc. 6th Internat.

Conf. Theory Appl. Graphs), volume 2, pages 899{912, New York, NY, 1991. Wiley.

[186] D. Mount. On �nding shortest paths on convex polyhedra. Technical Report 1495, Depart-

ment of Computer Science, University of Maryland, 1985.

[187] D. M. Mount. The number of shortest paths on the surface of a polyhedron. SIAM J.

Comput., 19:593{611, 1990.

[188] B. K. Natarajan. On comparing and compressing piece-wise linear curves. Technical report,

Hewlett Packard, 1991.

[189] W. P. Niedringhaus. Scheduling with queueing: the space factory problem. Technical report,

Princeton University, 1979.

[190] N. Nilsson. A mobile automaton:An application of arti�cial intelligence techniques. In Proc.

IJCAI, pages 509{520, 1969.

[191] S. Ntafos. Watchman routes under limited visibility. In Proc. 2nd Canad. Conf. Comput.

Geom., pages 89{92, 1990.

[192] C.

�

O'D�unlaing,M. Sharir, and C. K. Yap. GeneralizedVoronoi diagrams for moving a ladder:



Ch. 1. A Survey of Computational Geometry 53

I. topological analysis. Commun. Pure Appl. Math., 39:423{483, 1986.

[193] C.

�

O'D�unlaing,M. Sharir, and C. K. Yap. GeneralizedVoronoi diagrams for moving a ladder:

II. e�cient construction of the diagram. Algorithmica, 2:27{59, 1987.

[194] C.

�

O'D�unlaing and C. K. Yap. A \retraction" method for planning the motion of a disk. J.

Algorithms, 6:104{111, 1985.

[195] C.

�

O'D�unlaing and M. Sharir C. K. Yap. Retraction: a new approach to motion-planning.

In Proc. 15th Annu. ACM Sympos. Theory Comput., pages 207{220, 1983.

[196] J. O'Rourke. Finding a shortest ladder path: a special case. IMA Preprint Series 353, Inst.

Math. Appl., Univ. Minnesota, Minneapolis, MN, 1987.

[197] J. O'Rourke, H. Booth and R. Washington. Connect-the-dots: a new heuristic. Computer

Vision, Graphics, and Image Processing, Vol. 39, pp. 258{266, 1987.

[198] J. O'Rourke and C. Schevon. Computing the geodesic diameter of a 3-polytope. In Proc.

5th Annu. ACM Sympos. Comput. Geom., pages 370{379, 1989.

[199] J. O'Rourke, S. Suri, and H. Booth. Shortest paths on polyhedral surfaces. In Proc. 2nd

Sympos. Theoret. Aspects Comput. Sci., volume 182 of Lecture Notes in Computer Science,

pages 243{254. Springer-Verlag, 1985.

[200] M. H. Overmars and E. Welzl. New methods for computing visibility graphs. In Proc. 4th

Annu. ACM Sympos. Comput. Geom., pages 164{171, 1988.

[201] N. Papadakis and A. Perakis. Minimal time vessel routing in a time-dependent environment.

Transportation Science, 23(4):266{276, 1989.

[202] N. Papadakis and A. Perakis. Deterministic minimal time vessel routing. Operations Re-

search, 38(3):426{438, 1990.

[203] C. H. Papadimitriou. The Euclidean traveling salesman problem is np-complete. J. of The-

oretical Computer Science, pages 237{244, 1977.

[204] C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Inform.

Process. Lett., 20:259{263, 1985.

[205] C. H. Papadimitriou and E. B. Silverberg. Optimal piecewise linear motion of an object

among obstacles. Algorithmica, 2:523{539, 1987.

[206] C.H. Papadimitriou and M. Yannakakis. Shortest paths without a map. In Proc. ICALP,

1989.

[207] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-

Wesley, Reading, MA, 1984.

[208] M. Pellegrini. On the zone of a co-dimension p surface in a hyperplane arrangement. In Proc.

3rd Canad. Conf. Comput. Geom., pages 233{238, 1991.

[209] R. Pollack, M. Sharir, and G. Rote. Computing of the geodesic center of a simple polygon.

Discrete Comput. Geom., 4:611{626, 1989.

[210] F. P. Preparata and S. J. Hong. Convex hulls of �nite sets of points in two and three

dimensions. Commun. ACM, 20:87{93, 1977.

[211] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-

Verlag, New York, NY, 1985.

[212] R. C. Prim. Shortest connection networks and some generalizations.Bell Systems Technical

Journal, 36:1389{1401, 1957.

[213] J. H. Reif. Complexity of the generalized movers problem. In J. Hopcroft, J. Schwartz, and

M. Sharir, editors, Planning, Geometry and Complexity of Robot Motion, pages 267{281.

Ablex Pub. Corp., Norwood, NJ, 1987.

[214] J. H. Reif and J. A. Storer. Shortest paths in Euclidean spaces with polyhedral obstacles.

Report CS-85-121, Dept. Comput. Sci., Brandeis Univ., Waltham, MA, 1985.

[215] J. H. Reif and J. A. Storer. Minimizing turns for discrete movement in the interior of a

polygon. IEEE J. on Robotics and Automation, pages 182{193, 1987.

[216] H. Rohnert. A new algorithm for shortest paths avoiding convex polygonal obstacles. Report

A86/02, Fachber. Inform., Univ. Saarlandes, Saarbr�ucken, Germany, 1986.

[217] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Inform. Process.

Lett., 23:71{76, 1986.



54 J. Mitchell and S. Suri

[218] G. Rote. Computing the Hausdor� distance between point sets on a line. IPL, 1992.

[219] G. Rote. A new metric between polygons, and how to compute it. In Proc. ICALP, 1992.

[220] J. T. Schwartz and M. Sharir. On the \piano movers" problem I: the case of a two-

dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl.

Math., 36:345{398, 1983.

[221] J. T. Schwartz and M. Sharir. On the \piano movers" problem II: general techniques for

computing topological properties of real algebraic manifolds. Adv. Appl. Math., 4:298{351,

1983.

[222] J. T. Schwartz and M. Sharir. On the \piano movers" problem III: coordinating the motion

of several independent bodies: the special case of circular bodies moving amidst polygonal

barriers. Internat. J. Rob. Res., 2(3):46{75, 1983.

[223] J. T. Schwartz and M. Sharir. On the \pianomovers" problemV: the case of a rod moving in

three-dimensional space amidst polyhedral obstacles. Commun. Pure Appl. Math., 37:815{

848, 1984.

[224] J. T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In J. van Leeuwen,

editor,Algorithms and Complexity, volumeA of Handbook of Theoretical Computer Science,

pages 391{430. Elsevier, Amsterdam, Netherlands, 1990.

[225] R. Seidel. A convex hull algorithm optimal for point sets in even dimensions. Report 81/14,

Dept. Comput. Sci., Univ. British Columbia, Vancouver, BC, 1981.

[226] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost by face. In Proc.

18th Annu. ACM Sympos. Theory Comput., pages 404{413, 1986.

[227] M. I. Shamos. Computational geometry. Ph.D. Thesis, Dept. of Computer Science, Yale

University, 1978.

[228] M. Sharir. On shortest paths amidst convex polyhedra.SIAM J. Comput., 16:561{572, 1987.

[229] M. Sharir and E. Ariel-She�. On the \piano movers" problem IV: various decomposable

two-dimensional motion planning problems. Commun. Pure Appl. Math., 37:479{493, 1984.

[230] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput., 15:193{

215, 1986.

[231] T. Smith, G. Peng, and P. Gahinet. A family of local, asynchronous, iterative, and par-

allel procedures for solving the weighted region least cost path problem. Technical report,

Department of Computer Science, University of California, Santa Barbara, 1988.

[232] K. J. Supowit. The relative neighborhood graph with an application to minimum spanning

trees. J. ACM, 30:428{448, 1983.

[233] S. Suri. A linear time algorithm for minimum link paths inside a simple polygon. Comput.

Vision Graph. Image Process., 35:99{110, 1986.

[234] S. Suri. Minimum link paths in polygons and related problems. Ph.D. Thesis, Dept. Comput.

Sci., Johns Hopkins Univ., Baltimore, MD, 1987.

[235] S. Suri. Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci.,

39:220{235, 1989.

[236] S. Suri. On some link distance problems in a simple polygon. IEEE Transactions on Robotics

and Automation, 6:108{113, 1990.

[237] G. F. Swart. Finding the convex hull facet by facet. J. Algorithms, 6:17{48, 1985.

[238] R. Tamassia and F. P. Preparata. Dynamic maintenance of planar digraphs, with applica-

tions. Algorithmica, 5:509{527, 1990.

[239] X. H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for constructing shortest

watchman routes. In Proc. 2nd Annu. SIGAL Internat. Sympos. Algorithms, volume 557 of

Lecture Notes in Computer Science, pages 163{175. Springer-Verlag, 1991.

[240] R. E. Tarjan and C. J. Van Wyk. An O(n log logn)-time algorithm for triangulating a simple

polygon. SIAM J. Comput., 17:143{178, 1988. Erratum in 17(1988)106.

[241] A. Tarski. A decision method for elementary algebra and geometry. Univ. of California Press,

Berkeley, CA, 1951.

[242] G. T. Toussaint. Pattern recognition and geometrical complexity. In Proc. 5th Internat.

Conf. Pattern Recogn., pages 1324{1347, 1980.



Ch. 1. A Survey of Computational Geometry 55

[243] G. T. Toussaint. The relative neighborhood graph of a �nite planar set. Pattern Recognition,

Vol. 12, pp. 261{268, 1980.

[244] G. Toussaint. Computing geodesic properties inside a simple polygon. Technical report,

School of Computer Science, McGill University, 1990.

[245] P. M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM J. Comput., 17:572{

582, 1988.

[246] P. M. Vaidya. Approximate minimum weight matching on points in k-dimensional space.

Algorithmica, 4:569{583, 1989.

[247] P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., (18):1201{1225, 1989.

[248] P. M. Vaidya. An O(n logn) algorithm for the all-nearest-neighbors problem.Discrete Com-

put. Geom., 4:101{115, 1989.

[249] G. Vegter. The visibility diagram: A data structure for visibility problems and motion plan-

ning. In Proc. 2nd Scand. Workshop Algorithm Theory, volume 447 of Lecture Notes in

Computer Science, pages 97{110. Springer-Verlag, 1990.

[250] G. Vegter. Dynamically maintaining the visibility graph. In Proc. 2nd Workshop Algorithms

Data Struct., volume 519 of Lecture Notes in Computer Science, pages 425{436. Springer-

Verlag, 1991.

[251] C. A. Wang and E. P. F. Chan. Finding the minimum visible vertex distance between two

nonintersecting simple polygons. In Proc. 2nd Annu. ACM Sympos. Comput. Geom., pages

34{42, 1986.

[252] E. Welzl. Constructing the visibility graph for n line segments in O(n

2

) time. Inform. Pro-

cess. Lett., 20:167{171, 1985.

[253] P. Widmayer. Network design issues in vlsi. Technical report, Institut f�ur Informatik, Uni-

versity Freiburg, Rheinstrasse 10-12, 7800, Freiburg, West Germany, 1989.

[254] P. Widmayer, Y. F. Wu, and C. K. Wong. On some distance problems in �xed orientations.

SIAM J. Comput., 16:728{746, 1987.

[255] G. Wilfong. Motion planning for an autonomous vehicle. In IEEE Int. Conf. Robotics and

Automation, pages 529{533, 1988.

[256] G. Wilfong. Shortest paths for autonomous vehicles. Technical Report, AT& T Bell Labs,

1988.

[257] C. Yang, D. Lee, and C. Wong. Rectilinear paths among rectilinear obstacles revisited.

Technical report, Dept. of EE & CS, Northwestern Univ., 1992.

[258] C. D. Yang, D. T. Lee, and C. K. Wong. On bends and lengths of rectilinear paths: a graph-

theoretic approach. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture

Notes in Computer Science, pages 320{330. Springer-Verlag, 1991.

[259] A. Yao. On constructingminimum spanning trees in k-dimensional spaces and related prob-

lems. SIAM J. Computing, 11:721{736, 1982.

[260] A. C. Yao. A lower bound to �nding convex hulls. J. ACM, 28:780{787, 1981.

[261] C. K. Yap. Algorithmic motion planning. In Advances in Robotics 1: Algorithmic and Geo-

metric Aspects of Robotics, pages 95{143, J. T. Schwartz and C.-K. Yap, editors. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1987.

[262] C. K. Yap. AnO(n logn) algorithmfor the Voronoi diagramof a set of simple curve segments.

Discrete Comput. Geom., 2:365{393, 1987.

[263] K. Zikan. Least-squares image registration.ORSA Journal on Computing, 3:169{172, 1991.


