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Abstract. We study the shortest path problem in weighted polygonal
subdivisions of the plane, with the additional constraint of an upper
bound, k, on the number of links (segments) in the path. We prove
structural properties of optimal paths and utilize these results to ob-
tain approximation algorithms that yield a path having O(k) links and
weighted length at most (1 4 €) times the weighted length of an optimal
k-link path, for any fixed € > 0. Some of our results make use of a new
solution for the 1-link case, based on computing optimal solutions for a
special sum-of-fractionals (SOF) problem. We have implemented a sys-
tem, based on the CORE library, for computing optimal 1-link paths;
we experimentally compare our new solution with a previous method for
1-link optimal paths based on a prune-and-search scheme.

1 Introduction

A weighted subdivision R in the plane is a decomposition of the plane into
polygonal regions, each with an associated nonnegative weight. The weighted
length of a line segment, ab, joining two points a and b within the same region
R; € R is defined as the product of the weight w; of region R; and the Euclidean
length |ab| of the line segment ab. For a polygonal path p, the weighted length
is given by a finite sum of subsegment (Euclidean) lengths, each multiplied by
the weight of the region containing the subsegment.

We are motivated by applications that require paths that are optimal with
respect to more than one criterion. For example, in emergency and medical
interventions, in military route planning, and in air traffic applications, one may
desire polygonal paths having only a few links (turns), while also having a small
(weighted) length. A minimum-weight path may have unacceptably many turns.
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In this paper we study the k-link shortest path problem in weighted regions,
in which we place an upper bound, k, on the number of links (edges) in the
polygonal path, while minimizing the weighted length of the path. We com-
pute paths from a given source region R, to a target region R; in a weighted
subdivision R. An important special case, which arises as a subproblem in our
approach, is that of computing a 1-link shortest path from a source to a target.

Related Work. In the unweighted setting, approximation algorithms are known
for k-link shortest paths inside simple polygons and polygons with holes [16]. In
weighted subdivisions, turn-constrained optimal paths have been studied in the
context of air traffic routing (using a grid-based dynamic programming algo-
rithm) [10] and, very recently, in the context of mine avoidance routing (using
a genetic algorithm) [13]; neither of these approaches gives approximation al-
gorithm guarantees. The 1-link shortest path problem to compute an optimal
“link” (or “penetration”) in weighted subdivisions has been studied in [2, 3, 6],
where it is shown that the special structure of the optimal solution allows for
efficient search for solutions.

Without a bound on the number of links, several results are known for com-
puting shortest paths in weighted regions [1,9, 11,12, 14, 15, 19], beginning with
the first polynomial-time results of Mitchell and Papadimitriou [15], who com-
pute (1 + e)-approximate geodesic shortest paths on weighted terrains.

Our Results. We present the following results. (1) We prove there exists a
(2k — 1)-link path p from source R, to target R; that turns only on the edges
of R, such that the weighted length of p is at most that of an optimal k-link
path p* from R to R;. (2) We give two approximation algorithms for computing
k-link shortest paths in weighted regions. The first one requires the computation
of 1-link shortest paths and produces a (5k —2)-link path whose weight is within
factor (1 + €) of optimal. The second algorithm relies only on computation of
(1+¢/6)-approximate 1-link shortest paths and produces a 14k-link path whose
weight is within factor (1 + €) of optimal. (3) We give a new (in this context)
algorithm for computing 1-link shortest paths, based on solving a variant of
the sum-of-linear-fractionals (SOLF) problem [8]. (4) We have implemented a
system, based on the CORE library [5], for computing 1-link shortest paths.
We compare experimentally two algorithms for 1-link shortest paths: one based
on our variant of the SOLF problem, and one based on a prune-and-search
scheme [6].

Preliminaries. Let R be a planar weighted subdivision with a total of n vertices
and a set £ of O(n) edges. Without loss of generality, we assume R is triangu-
lated, the source and target regions can be separated by a vertical line, and the
vertices of R are in general position (no three collinear). For a path p, we let |p|
denote the Euclidean length of p and ||p|| the weighted length of p. A polygonal
path p whose turn points all lie on the edge set £ is said to be edge-restricted.
Consider a link (line segment) [ between two edges es and e; of R, with e, and
e; not bounding the same (triangular) face (otherwise, the problem is trivial).
The weighted length of the link I is d(I) = >_, g, p widi(l), where w; is the
weight of R; and d;(1) is the Euclidean length of [ within the region R; € R.



Let the equation of the line supporting [ be y = mx + b. Let R; be a region
intersected by [, with s} and s? the two sides of R; that intersect I, at points
vi(z},y}) and v2 (22, y2), respectively. From d;(l) = v/1 + m2|z? —z}|, we have
that

d(l) =+1+m? Z wi|x?—x%|:\/1—|—m220¢wi b (1)
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where o; is +1 or -1, m; and b; are constants, and the number of terms in
the summation is O(n). If [ is rotated and translated, while keeping its end-
points on e; and e, the expression for d(I) does not change as long as no ver-
tex of R is crossed by [. The corresponding set of pairs (m,b) defines a two-
dimensional convex domain D whose edges correspond to [ being tangent to a
vertex of R and whose vertices correspond to [ passing through two vertices of
R [2]. The region swept by [, while maintaining its combinatorial type, is called
an hourglass (Fig. 1). For a fixed
slope m, we see from (1) that d(I)
is linear in b as [ varies within the
hourglass; thus, there exists a seg-
ment [ minimizing d(l), over the
hourglass, passing through a vertex
v of R [6]. For a fixed choice of the
vertex v of an hourglass, the expres-
sion for d(l) depends only on the Fig.1. An hourglass for which the for-

slope m of the line through I: mula for d(l) does not change.
a
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where dy, a; and b; are constants. Note that d(I) is bounded and positive.
2 Approximating k-Link Shortest Paths

Lemma 1. Let p be a shortest k-link path between edges es and e; of R. Then,
each link of p has an endpoint on an edge of R or goes through a vertex of R.

Proof. The proof is by contradiction. Let p be a k-link path between e, and
et, let [1, 1> and I3 be three consecutive links of p and refer to Figure 2. Assume
that p makes two consecutive region interior turns, one at the common endpoint
of the links /; and Iy and the other at the common endpoint of the links /5 and
I3 (Figure 2 (a)). Assume also that the turn for [; and ls is inside the region Rj,
the turn for ls and I3 is inside the region R,, and extend [y and I3 to intersect
the boundaries of R; and Rg, respectively. If we slide Iy parallel to itself (i.e.,
the slope of I3 is fixed) then the length of p changes only locally, corresponding
to the changes in length for Iy, I, and [3. The change in length for I5 is a linear
function of the intercept of the line supporting l5. It can also be shown that the
changes for [y and I3 are linear functions of the same variable. Thus, p can be



improved locally by sliding lo until either it hits a vertex of R or an intersection
point of I3 N Ry or I3 N Ry. Figure 2 (b), (¢) and (d) shows three possible cases
for consecutive links on an optimal path p. The other cases can be obtained by
symmetry. The rest follows by induction on the number of links on the path. O

(b) (© (d)

Fig. 2. (a) Three consecutive links l1, 2, and I3; (b) the middle link ends on edges; (c)
an inside region turn with a link ending on an edge and (d) an inside turn with a link
stopped at a vertex of the subdivision.

Theorem 1. There exists a path p between es and e; with at most (2k —1)-links
that turns only on the edges of R and such that the weighted length of p is at
most that of a k-link shortest path p* from es to e;.

We now show how to modify previous discretization schemes (e.g., [1,19]) in
order to approximate edge-restricted k-link shortest paths. We say a path p from
source point s to destination point t is an e-good approximate shortest path if
[Ipl] < (1 + €)||pr(s,t)]|, where pg(s,t) is an edge-restricted k-link shortest path
from s to t.

Let € be the set of boundary edges of R. Let £(v) be the set of subdivision
edges having endpoint v, and let d(v) be the minimum distance between v and
the edges in &€ \ £(v). (Note that if v is not a vertex of R, then &(v) = 0.)
For each edge e € &, let d(e) = sup,¢.d(z). Let v(e) be a point on e such

that d(v(e)) = d(e). For each vertex v € R, let r(v) = ed(;). We refer to r(v)
as the vertex radius for v. The disk of radius r(v) centered at v defines the
vertez-vicinity S(v) of the vertex v.

We now describe how the Steiner points on an edge e = vyv; are chosen.
Each vertex v;, where ¢ = 1,2, has a vertex-vicinity S(v;) of radius r(v;) and
the Steiner points v;1,...,v;; are placed on e such that [v;vs1] = r(v1) and
[Vi,mVim41| = €d(vim), m =1,2,...,4; — 1. The value of j; is such that v; j, =
v;(e). We call the line segment formed by two adjacent Steiner points v; ,, and
Vi, m+1 & Steiner edge. The pairing of any two Steiner edges forms a quadrilateral
shape called a Steiner strip. The shape could be degenerate if the Steiner edges
are on the same boundary edge. In [19], it has been shown such a discretization
scheme can be used to guarantee a 3e-good approximate shortest path. With §
the maximum number of Steiner points placed on an edge, this discretization
scheme gives § = O(1logl). (It is important to note that § also depends on
some geometric parameters of R, such as the longest edge; see [1].)

Let (e;,e;) be a pair of edges of the subdivision and assume a k-link edge-
restricted shortest path has a turn on e; and the next turn on e;. Then, the short-
est path link [* between e; and e; is contained in an hourglass corresponding to
one of the O(n?) 1-link shortest path subproblems defined by the pair (e;, e;) (see




Fig. 1). Each of the two endpoints of the shortest path link {* lies between either
two Steiner points or a vertex and a Steiner point. Assume each endpoint is be-
tween two Steiner points. Let [ be one of the four line segments between e; and e;
that are defined by the four Steiner points and further assume that [ is fully con-
tained in the same hourglass as [*. Then, d(I) and d(I*) have similar description
and d(1) —d(I") = 3270 wid;(1) = 3250 widi (1) = 3777 wi(ds (1) — di(I%)) where
m = O(n) and, without loss of generality, we assume that [ and [* intersect the
regions Ry, Ra, ..., Ry, of subdivision R. Asking that > ;" w;(d;(1) — d;(I*)) <
ed(l*) implies > w;(d; (1) —d; (1*)) < €Y it wid;(I*) and thus > w;d; (1) <
Yot wi((1 + €)d;(1*)). Thus, the Steiner points on the edges e; and e; should
be such that d;(1) < (14 ¢€)d;(I*), i =1,2,...,m.

Clearly, if I* passes very close to a vertex v of R and intersects two or
more edges incident to v, a discretization scheme cannot guarantee that d;(I) <
(1+¢€)d;(1*), for the corresponding distances. More generally, a similar situation
appears when the optimal path has multiple turns very close to v, e.g., with link
endpoints between a vertex and a Steiner point (Fig. 3 (a)). Another potential
problem is that it is possible that none of the four line segments joining the
points that define the Steiner strip between e; and e; is fully contained in the
same hourglass as [*, implying that [ and {* intersect different subsets of regions
of R. The challenge, then, is to formulate approximation schemes that either
avoid or address these problems.

We address the first problem using normalization. A path p is said to be
normalized if it does not turn on edges within a vertex-vicinity. In Lemma 1 of
[19], Sun and Reif show that for any path p from s to ¢, there is a normalized
path p from s to ¢ such that |[p|| = (1 + §)||p||. For k-link edge-restricted paths
we have the following related lemma.

Lemma 2. For any k-link edge-restricted path py from s to t, there is a nor-
malized path p from s to t such that ||p|| = (1 + ¢/2)||pk]]-

Proof. We observe that p need not be an optimal path for Sun and Reif’s
Lemma 1 to hold. Thus, the same proof holds for a k-link path, p;. However,
there is no guarantee that p has only k links. O

We would like to bound the number of links that may be “added” to p relative
to pr. Let uf be the boundary point where pj, first enters a region adjacent to
v and let uj be the boundary point where py leaves a region adjacent to v. Let
u} € pr be the boundary point on the cheapest region intersected by py before
entering the vicinity of v and let u}, € pg be the boundary point on the cheapest
region intersected by the last link of p; that has nonempty intersection with the
vicinity of v (see Fig. 3 (a)). In constructing p, we may remove zero or more
links in p completely contained in the vertex-vicinity (link wyus in Fig. 3 (a))
and then add up to two additional links that begin outside the vertex-vicinity
and pass through v (links wfv and wvuj in Fig. 3 (a)). Fig. 3 (a) represents a
situation in which the number of links in the subpath p[u},u}] in the original
path pj, is one more than in the normalized path, p. Fig. 3 (b) is representative
of the worst case, where two links are added and none are removed.
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Fig. 3. (a) The solid line path is part of an optimal k-link path. The dotted path
represents a normalized path. (b) The solid line path represents a single turn in an
optimal k-link path. The dotted path represents a normalized path.

Lemma 3. For any k-link path py from s to t, there is a normalized edge-
restricted path p such that ||p|| = (1 + €/2)||pk|| and p has at most 3k — 2 links.

Proof. We observe that at most two links need to be added for each link of py
when constructing a normalized path p from a path py. Let k1 be the number of
links that need normalization. Then, they are replaced by 3k; —2 links. Let k2 be
the remaining links (i.e., k = k1 + ko). These links may have an endpoint that is
not on a vertex or edge of R. From Theorem 1, at most 2ks — 1 links are required
to create an approximating path restricted to edges. Note that each of the at
most ko — 1 links that are within a triangle of R may also require normalization,
which would add ks — 1 extra links. Thus, in a normalized edge restricted path
the ko links are replaced by at most 3ks — 2 links. O

An approximation using exact optimal links. Recall that we refer to the
line segment formed by two adjacent Steiner points v; ; and v; j+1 on an edge
incident to vertex v; € R as a Steiner edge. The pairing of any two Steiner edges
forms a Steiner strip. The pairing of a Steiner edge with a vertex of R forms a
Steiner-vertex strip. The pairing of any two vertices of R forms a vertez-pair.

Consider a shortest normalized k-link path, pg, that only turns on edges.
Each link /; in py is “captured” either by a Steiner strip, a Steiner-vertex strip,
or a vertex-pair.

If [; is captured by a vertex-pair (u,v) the weighted length of I; can be easily
computed as ||uv]||. Then, the difficulty in approximating the weighted length of
l; is when [; is captured by either a Steiner strip or a Steiner-vertex strip, where
the Steiner strip is the more general case.

Let s(eq, e2) be a Steiner strip that captures [;, where e; and es are the Steiner
edges at which [; originates and terminates, respectively. Although [; forms part
of an optimal k-link path, [; is not necessarily an optimal link between e; and es.
This suggests one could try to replace I; with the optimal link I} between e; and
e2. We show in the next lemma (proof omitted here) that using k optimal links
and k “small” connecting links we can construct an approximating path with 2k
links that provides an e-good approximation of pi. We define an edge-crawling
link as a link along an edge of R and contained within a Steiner edge (see Fig. 4).



Fig. 4. The dotted line path represents an optimal k-link path. The solid line path
represents a 2k approximation made up of optimal links and “small” connecting, edge-
crawling links.

Lemma 4. A normalized k-link path, py, that turns on edges can be approz-
imated by an e-good 2k-link path made up of k optimal links connected by k
edge-crawling links.

Theorem 2. For sufficiently small positive €, a k-link shortest path can be ap-
prozimated with a normalized e-good (5k — 2)-link edge restricted path.

Proof. Tt follows from Lemma 3 that there is a normalized edge-restricted path
with 3k — 2 links. When applying Lemma 4, only 2k optimal links on this path
need small edge crawling links. The approximation factor is (1 4 €/2)(1 +¢€) =
(14 3¢/2 +€2/2) < (1 + 2¢), assuming € < 1/2. Then, we can use € = ¢/2 when
generating the Steiner points to get the claimed result (we will no longer mention
this in the remaining proofs). a

We now show how to use this discretization scheme to construct a weighted
graph G.(V, E) that captures approximate paths. Each node v € V' corresponds
to a vertex of R or a Steiner edge in our discretization scheme. Each edge e € E
corresponds to either a Steiner strip, a Steiner-vertex strip or a vertex-pair. The
weight of e is the weighted length of a shortest 1-link path through the respective
Steiner strip, Steiner-vertex strip or vertex-pair. (Some other geometric informa-
tions are associated with G.; we defer this to the full paper.) This differs from
the discretization graph in [1,19], where V is formed of Steiner points and F is
made up of links between Steiner points.

The number of vertices in V' is O(én) and the number of edges in E is
O((6n)?). Computing a single edge in G corresponds to solving a 1-link shortest
path problem for a specific hourglass. Let this time be T} (n). Thus, the time
to compute G, is O((0n)?Ty(n)). Once G, is constructed, we can use dynamic
programming to find a k-link shortest path in G, in O(k(dn)*) time.

Theorem 3. There erists a path approzimation graph G. of size O((6n)?), that
can be constructed in O((6n)?Ty(n)) time, and can be used to report in O(k(dn)?t)
time a (5k — 2)-link path that (1 + €)-approzimates a k-link shortest path.

An approximation using approximate optimal links. Finding optimal
1-link paths can be computationally expensive (e.g., see Section 3). We now
describe a technique for computing approximate optimal 1-link paths for the
subproblems that arise in building the path approximation graph.



Observe that a link [ between two Steiner edges e; and e; may intersect
several Steiner edges placed on the edges of each region [ crosses. Each region
that [ intersects captures part of [ in a Steiner strip with one exception. If [
passes within the vertex-vicinity of a vertex in R then part of [ is not captured.
Furthermore, [ could intersect O(n) vertex-vicinities.

We would like to find an approximating path that has no vertex-vicinity
intersections. However, as we have seen earlier, avoiding a vertex vicinity could
add two extra links on the approximating path. To reduce the increase in the
number of links on the approximating path we then need to reduce the number
of vertex-vicinities that can be intersected by a single link.

We accomplish this by changing the discretization scheme slightly. Let 7
be the set of all possible vertex triplets formed by the vertices in R. O(n?)
such triplets exist that correspond to O(n?) triangles. For each vertex in each
triangle we can compute the minimum distance to the opposite edge. Let ~; be
the minimum such distance obtained from a triplet containing the vertex v;, and
let v = min{v;/2 | i = 1,2,...,n}. By a recent result in [7], 7; can be found in
O(nlogn) time and thus v can be computed in O(n?logn) time.

Let the new vertex-vicinity radius, r'(v;), be min(r(v;),y). The first Steiner
point after a vertex v; is placed such that |v;v; 1| = r'(v;). A path p is said to
be ~v-normalized if each link in p does not turn within a vertex-vicinity or pass
through a vertex-vicinity without also passing through the vertex.

The proofs of Lemmas 5-8 are deferred to the full paper.

Lemma 5. For any k-link path py from s to t, there is a y-normalized edge-
restricted path p from s to t such that (1) ||p|| = (14 §)||px|| and (2) p has no
more than eight times as many links as py.

Next, we consider the computation of
a single link. Fig. 5 (a) illustrates a sit-
uation in which a Steiner strip intersects
one or more edges with sparsely placed
Steiner points. Fig. 5 (b) illustrates a sit-
uation where a Steiner strip intersects
one or more edges with densely placed
Steiner points. In Fig. 5 (a), the line seg-
ments /1 and [ provide an e-good ap-
proximation for all line segments cap-
tured between [y and ly. In Fig. 5 (b),

l1 and Iy only provide e-good approxima- (a) (b)
tions for the lines that pass between the
same Steiner points as [1 and l. Fig.5. A Steiner strip formed by

The number of possible approximat-  jipeg 5 and I, may intersect edges

ing 1-link paths for a pair of edges iS {hat are more coarsely (a) or more
O((0n)?). The complexity to store both finely (b) sampled.

every possible approximation and the
ranges over which those approximations are valid for the entire subdivision is
then O((0n)%).



Lemma 6. Let [ be an optimal y-normalized link between two edges e; and es.
A single (1 + €)-factor approximating link can be computed in O(n(dn)?) time.

Lemma 7. For sufficiently small positive €, a k-link shortest path can be ap-
proximated with a ~y-normalized e-good (14k)-link edge restricted path.

Lemma 8. The path approzimation graph G. has size O((6n)?) and can be con-
structed in O(n(6n)*) time.

Using a dynamic programming algorithm for computing k-link shortest paths
in weighted graphs, one can find an approximate solution for the k-link shortest
path using G, in O(k(én)?) time.

Theorem 4. There erists a path approzimation graph G. of size O((6n)?), that
can be constructed in O(n(dn)*) time, and can be used to report in O(k(én)*)
time a 14k-link path that (1 + €)-approzimates a k-link shortest path.

3 Optimal 1-Links: A Sum of Fractionals Approach

To compute 1-link shortest paths, we adapt an algorithm for minimizing a sum of
linear fractional functions (SOLF) [8], to the sum of fractional functions (SOF)
problem that describes an optimal 1-link path. In order to find a 1-link short-
est path one needs to solve a number of optimization problems of the form
minges{d ", V1+ a2} = minges{d ", ri(2)}, where by = 0, b; = 1,
i = 2,3,...,m, a;,c; are constants and b;x +¢; > 0 over S, i = 1,2,...m.
Thus, the functions we try to optimize are 1-dimensional SOFs with generic
term 7;(x) = V14 22(a;/(b;x + ¢;)) rather than 1-dimensional SOLFs, where
the generic term would have the form r;(z) = a;/(x + ¢;). While in general
one may not be able to apply the d-dimensional SOLF algorithm in [8] for a
SOF problem, we will show below that this is possible for our objective func-
tion. Our choice of method is based on the results in [4], which show that the
one-dimensional SOLF algorithm is very fast in practice. Since our function is a
one-dimensional SOF, adapting the SOLF method for SOF functions may lead
to similar results.

The only place in the SOLF algorithm where the expression of the ratio
ri(x) is important is in the optimization subproblems that require to minimize
(or maximize) r;(z) over a convex domain (an interval in our case). For a 1-
dimensional SOLF, this reduces to minimizing a linear function over an interval
and thus takes constant time.

Lemma 9. The function r(x) = V14 a2 b_;ic_ is unimodal if b;x + ¢; > 0 (or

bix + ¢; < 0), with extremal value obtained at x* =1/¢;.

From Lemma 9 it follows that for the SOF problems associated with the 1-
link shortest path, the optimization subproblems for r;(z) can be solved exactly
in constant time each and thus we can apply the SOLF algorithm for these
SOFs. As shown in [4], an iteration of the algorithm can be implemented to run



in O(m) time for the 1-dimensional case, while some special steps (executed in
case of a stall) require altogether O(m?) time.

One way to speed up the computation is to process each of the SOF problems
in turn, temporarily suspending the processing of the current SOF before k has
been incremented (i.e. before the execution of Step 5). Each time an upper or
lower bound is updated, we can use the new bound to remove or cull SOF prob-
lems from the problem space. Experimental results suggest this culling process
very quickly removes many subproblems that will not lead to an optimal solu-
tion. A hybrid implementation where the subdivision algorithm in [6] is applied
to stalled regions would also fit into this framework.

4 Implementation and Experiments

We have implemented two algorithms for solving the weighted region 1-link
shortest path problem. The first one is based on the prune-and-search scheme
in [6] and the second one is based on the SOF algorithm in Section 3. Our results
show that both algorithms are fast on random generated subdivisions. To ensure
robustness for the special cases when a source-to-target link is close to an edge
or vertex of R our implementation uses the CORE library [5].
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Fig. 6. (a) The original transverse CT scan, (b) a trace of structural elements in the
scan and (c) the triangulation of that structure.

We exemplify our software package on a problem inspired by biomedicine.
Consider the CT scan in Fig. 6 (a) which was taken from the Visible Human
Project [17]. The source image is made up of pixels which are samples from the
CT process. Fig. 6 (b) shows one possible “trace” of this data which emphasizes
certain structures. Using Shewchuk’s triangulator each region can be tessellated
into triangles using different constraints [18]. This is illustrated in Fig. 6 (c) where
we have chosen to make the area constraints on the interior regions greater than
those of the exterior region.

Fig. 7 shows the source and target regions we chose for this example. There
are over 1500 triangles in this mesh, but far fewer are of interest after the bound-



ing box is applied. The prune-and-search technique begins by enumerating possi-
ble optimization subproblems, with each subproblem corresponding to a double
wedge through a vertex of R. The initial double wedges are represented as dotted
lines in Fig. 7 (a). 37 wedges are found initially for the example in Fig. 7 but
after only one round of culling based on the upper and lower bounds for each
subproblem, there are only four wedges at step two (see Fig. 7 (b)). The number
of wedges continues to grow and shrink in next steps, and for our example the
algorithm terminates in twenty one steps (see Fig. 7 (c)).
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Fig. 7. Prune-and-search progress after (a) zero, (b) one, and (c) twenty one steps.

While in general this algorithm performs well, the difficulty in assessing it is
that it has very good best-case behavior and very bad worst-case behavior. In
the worst case, the algorithm may continue subdividing a double wedge region
over which the value of the objective function changes extremely slowly, such
that subdivided double wedges cannot be culled. Fig. 8 shows an example of
the best, worst and average number of subproblems competing in each step.

In applying the SOF technique
to the same problem we find sim-
ilar variabilities in performance. In
some instances the SOF technique
approaches a solution faster than
the subdivision approach and in
other instances the SOF technique
stalls and fails to progress. If the
SOF algorithm stalls, it is often nec-
essary to run the SOF algorithm re- ol e e
cursively on a subdivided problem. rrrrees sate;mu e
Unfortunately it is possible the SOF

algorithm will then continue to stall. Fig. 8. The wedge count at each step rep-

When the SOF algorithm was ap- yegents the number of active problems.
plied directly to each of the subprob-

lems in the series, we found that 61.71% of the subproblems stalled. An average
of 23.9 iteration steps and 7.64 recursive calls were required to solve each sub-
problem. If we consider only the subproblems which did not stall, we find that
on average only 2.4 iterations were required. One improvement that has shown
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some success is the adoption of a hybrid solution where a SOF approach is used
until a stall is detected and then in that case we revert to the subdivision tech-
nique in order to avoid a recursive stall. However, more experiments are needed
to decide which of the two algorithms performs better in practice.
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