AMS310, Lecture 6, Summer 2003

Point Estimates

- Estimator: A statistic intended for estimating a parameter e.g. \(\bar{X}, S^2 \)
- estimate: An observed value of the estimator
- standard error(s.e.): standard deviation of an estimator, \(s.e.(\bar{X}) = \sigma/\sqrt{n} \)
- An estimator \((\hat{\theta}) \) is an unbiased estimator of \(\theta \) if \(E(\hat{\theta}) = \theta \). \(E(\hat{\theta}) - \theta \) is called bias.

Confidence Interval of \(\mu \):

- maximum error: how close is an estimate from the true parameter.
 - normal with \(\sigma \) known: \(E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \)
 - large sample size with \(\sigma \) known: \(E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \)
 - normal with \(\sigma \) unknown: \(E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} \)

- Confidence Interval with \((1-\alpha)\) confidence: \(\bar{X} \pm E \) or \((\bar{X} - E, \bar{X} + E) \)

- Interpretation of C.I.: if the sampling procedure is repeated many many times, \((1-\alpha)\) of the confidence intervals based on the sample data will cover the true mean \(\mu \).

- Values of \(z_{\alpha/2} \):

<table>
<thead>
<tr>
<th>(1 - \alpha)</th>
<th>0.80</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_{\alpha/2})</td>
<td>1.28</td>
<td>1.645</td>
<td>1.96</td>
<td>2.58</td>
</tr>
</tbody>
</table>

- sample size needed to attain maximum error: \(n = \left(\frac{z_{1 - \alpha} \sigma}{E} \right)^2 \)

Hypothesis testing:

- Null Hypothesis: the naive assertion;
- Alternative Hypothesis: the assertion you want to approve.
- Analogy to the Justice system: keep the null hypothesis unless there is an strong evidence against it.
- Evidence: Data

- Measure of the strength of the evidence: P-value, the probability of observing more extreme or as extreme as the observed under the null hypothesis.

- Type I error: reject \(H_0 \) when \(H_0 \) is true.
- Type II error: retain \(H_0 \) when \(H_0 \) is false.

t-distribution

Homework: 7.6, 7.8, 7.12, 7.22