1.

(a) \(H_0 : \mu = 3.20, \ H_1 : \mu \neq 3.20 \)

(b) Test Statistics: \(Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \)

Observed Test Statistics: \(Z_{obs} = \frac{3.05 - 3.20}{0.34/\sqrt{50}} = -3.12 \)

(c) Look for -3.12 on the Normal table, and you should count both tail areas, yield P-value to be \(2 \times 0.0009 = 0.0018 \).

(d) Since the P-value is very small, we will reject the null hypothesis and conclude that the average thickness is not what we desire.

2.

(a) \(\mu_{\bar{X}} = \mu = 1000 \) hours.

(b) \(\sigma_{\bar{X}} = \sigma/\sqrt{n} = 400/\sqrt{400} = 20 \)

(c) Approximately normal by C.L.T.

(d) First, \(Z = \frac{980 - 1000}{20} = -1 \), then find \(P(Z < -1) \) on the normal table to be 0.16.

3. \(H_0 : \sigma = 0.05, \ H_1 : \sigma < 0.05 \)

4.

(a) \(P(X+Y \leq 40) = P(15,15)+P(15,20)+P(20,15)+P(20,20) = 0.05+0.05+0.05+0.10 = 0.25 \)

(b) \(P(X = 15) = 0.05 + 0.05 + 0.10 = 0.20 \)

\(P(X = 20) = 0.05 + 0.10 + 0.35 = 0.50 \)

\(P(X = 30) = 0 + 0.20 + 0.10 = 0.30 \)

(c) \(P(Y = 15|X = 20) = \frac{P(X=20,Y=15)}{P(X=20)} = 0.05/0.50 = 0.1 \
\(P(Y = 20|X = 20) = \frac{P(X=20,Y=20)}{P(X=20)} = 0.35/0.50 = 0.7 \)

5.

(a) \(E(U) = 2E(X_1) + E(X_2) - E(X_3) = 2 \times 1 + 2 - 3 = 1 \)

(b) \(Var(U) = 2^2Var(X_1) + Var(X_2) + Var(X_3) = 4 + 1 + 1 = 6 \)