Applied Calculus III

Practice Midterm II

1) Sketch the region over which the integral

\[\int_{1}^{4} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) \, dx \, dy \]

is performed.

2) Set up the integral of the function \(f(x, y) \) over the indicated region bounded by the functions \(g(x) \) and \(h(x) \). Do not attempt to evaluate the integral.

![Graph of the region](image)

3) Under the change of variables \(s = 3x + y, t = x - 4y \), the region \(\mathcal{R} \) in the \(xy \) plane is mapped to the region \(\mathcal{W} \) in the \(st \) plane. Rewrite

\[\int_{\mathcal{R}} \cos \left(\frac{x - 4y}{3x + y} \right) \, dx \, dy \]

as an integral in \(s, t \). Do not attempt to evaluate the integral you obtain.

4) Compute the integral

\[\int_{0}^{1} \int_{3}^{4} \sin(2 - y) \cos(3x - 7) \, dx \, dy \]

5) By a change to either cylindrical or spherical coordinates, as appropriate, evaluate

\[\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} \int_{1}^{4-x^2-y^2} \frac{1}{z^2} \, dz \, dy \, dx \]

6) Find the parametrization for the line through the point \((1,3,2)\) perpendicular to the \(yz \)-plane.
7) Find the parametrization for the circle of radius 3 parallel to the xz-plane, centered at the point $(0,5,0)$ and traversed counterclockwise when viewed from $(0,10,0)$.
8) Consider the curve $x^2z = 1$ in the xz-plane. Obtain a parametrization of the surface obtained by rotating this curve around the z-axis, for $z > 0$.
9) Solve for the flow line of the vector field

$$ \vec{F} = e^y \hat{i} + \frac{1}{2} \hat{j} $$

passing through the point $(0,1)$ at $t = 0$.
10) a) Sketch the vector field

$$ \vec{F} = \left(\frac{x^2}{x^2 + y^2} \right) \hat{i} + \left(\frac{y^2}{x^2 + y^2} \right) \hat{j} $$

for a selection of points on the x and y axes and along the lines $y = \pm x$. Ignore the origin $(0,0)$. b) Write the differential equation for the flow line of the vector field passing through the point $(4,2)$ at $t = 0$. Do not try to solve the differential equations.
Practice Midterm II - Answers

1)

2)

\[\int_{-2}^{3} \int_{g(x)}^{h(x)} f(x, y) dy dx \]

3)

\[\frac{1}{13} \int_{\mathcal{V}} \cos \left(\frac{t}{s} \right) ds dt \]

4)

\[\left(\frac{\sin(5) - \sin(2)}{3} \right) (\cos(1) - \cos(2)) \]

5)

\[\int_{1}^{4} \int_{0}^{2\pi} \int_{0}^{\sqrt{4-z}} \frac{1}{z^2} r dr d\theta dz = \pi [3 - \ln 4] \]

6)

\[\vec{r}(t) = (1 + t)\hat{i} + 3\hat{j} + 2\hat{k} \]

7)

\[\vec{r}(\theta) = 3 \cos \theta \hat{i} + 5\hat{j} + 3 \sin \theta \hat{k}, \quad 0 \leq \theta < 2\pi \]
8) \[\vec{r}(t) = \frac{1}{\sqrt{z}} \cos \theta \hat{i} + \frac{1}{\sqrt{z}} \sin \theta \hat{j} + z \hat{k}, \quad z > 0, \quad 0 \leq \theta < 2\pi \]

9) \[
\begin{align*}
\frac{dx}{dt} &= e^{\nu(t)} \quad y(t) = \frac{t}{2} + 1 \\
\frac{dy}{dt} &= 1/2 \quad x(t) = 2e^{t/2+1} - 2e = 2e^{t/2} - 1
\end{align*}
\]

10a)

b) \[
\begin{align*}
\frac{dx}{dt} &= \frac{x^2}{x^2 + y^2} \\
\frac{dy}{dt} &= \frac{y^2}{x^2 + y^2} \\
x(t = 0) &= 4, \quad y(t = 0) = 2
\end{align*}
\]