Solution to AMS502 Homework-4

Total: 50 points

1. (P71 #3) Consider the first-order equation \(u_t + cu_x = 0 \)
 a) If \(f \in C(R) \), show that \(u(x, t) = f(x - ct) \) is a weak solution.
 b) Can you find any discontinuous weak solutions?
 c) Is there a transmission condition for a weak solution with jump discontinuity along the characteristic \(x = ct \)?

 Solution: (a) A weak solution must satisfy \(\int u(v_t + cv_x)dx = 0 \) for all \(v \in C^1_0(\Omega) \). By changing variables \((x, t) \) to \((\xi, \eta) = x - ct \) and \(\eta = x + ct \), we have that \(u(x, t) = f(x - ct) = f(\xi) \). Also \(v_t = -cv_\xi + cv_\eta \) and \(v_x = v_\xi + v_\eta \), we have \(v_t + cv_x = 2cv_\eta \).

 \[\int u(v_t + cv_x)dx = 2c \int \xi_0 f(\xi) v_\eta d\xi d\eta = 0 \quad \text{for all } v \in C^1(\Omega) \]

 So \(u(x, t) = f(x - ct) \) is a weak solution.

 (b) Take \(f(\mu) = f(x - ct) \) with discontinuous \(f(s) \) as

 \[f(s) = \begin{cases} 1, & s < 0 \\ 0, & s \geq 0 \end{cases} \]

 Therefore, this discontinuous function is a weak solution.

 (c) No. The transmission condition is given by

 \[\int [u^+(0, \eta) - u^-(0, \eta)] v_{\eta}(0, \eta) d\eta = 0 \]

 So there is no a weak solution with jump discontinuity along \(\xi = 0 \).

2. (P82 #2) Solve the initial/boundary value problem

 \[\begin{cases} u_{tt} - u_{xx} = 0, & 0 < x < \pi \text{ and } t > 0 \\ u(x, 0) = x, u_t(x, 0) = 0, & 0 < x < \pi \\ u(0, t) = 0, u(\pi, t) = 0, & t \geq 0. \end{cases} \]

 (a) Find a Fourier series solution, and sum the series in regions bounded by characteristics. Do you think the solution is unique?

 (b) Use the parallelogram rule to solve this problem; is the resulting solution unique? Continuous? \(C^1 \)?

 Solution: (a) If we look for a Fourier series solution, we can try to find \(u(x, t) \) in the form

 \[u(x, t) = \sum_{n=1}^{\infty} a_n(t) \sin(nx) + \sum_{n=0}^{\infty} b_n(t) \cos(nx) \]

 Formally, \(u(x, t) \) satisfies the boundary conditions \(u(0, t) = u(\pi, t) = 0 \) for \(t \geq 0 \) and thus we have that \(b_n(t) = 0 \ \forall n \). Then, \(u(x, t) \) can be written as

 \[u(x, t) = \sum_{n=1}^{\infty} a_n(t) \sin(nx) \]
Moreover, we substitute it in the partial differential equation \(u_{tt} - u_{xx} = 0 \), we find the functions \(a_n(t) \) must satisfy the ordinary differential equations \(a_n''(t) + n^2 a_n(t) = 0 \), whose general solution is

\[
a_n(t) = c_n \cdot \sin(nt) + d_n \cdot \cos(nt)
\]

The constants \(c_n \) and \(d_n \) are determined by the initial conditions; namely, we use

\[
u(x, 0) = \sum_{n=1}^{\infty} d_n \sin(nx) = 0
\]

\[
u_t(x, 0) = \sum_{n=1}^{\infty} n c_n \cdot \sin(nx) = 1
\]

Hence, we can integrate to find

\[
d_n = \frac{2}{\pi} \int_0^\pi 0 \cdot \sin(nx) \, dx = 0 \quad \forall n
\]

\[
c_n = \frac{2}{\pi n^2} \int_0^\pi 1 \cdot \sin(nx) \, dx = \frac{2}{\pi n^2} (1 - (-1)^n) \quad \forall n
\]

\[
\Rightarrow c_n = \begin{cases}
\frac{4}{\pi n^2}, & n \text{ odd} \\
0, & n \text{ even}
\end{cases}
\]

\[
OR \quad c_n = \frac{2(1 - \cos(n\pi))}{n^2 \pi}
\]

Therefore, we find the Fourier series solution as

\[
u(x, t) = \sum_{n=0}^{\infty} \frac{4}{\pi(2n+1)^2} \sin((2n+1)t) \sin((2n+1)x)
\]

\[
OR \quad u(x, t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - \cos(n\pi)}{n^2} \sin(nx) \sin(nt)
\]

(b) We use the parallelogram rule to piece together the solution and the domain decomposition is as plotted in the figures.

In region C1, the solution \(u \) is defined by d’Alembert’s formula and the solution is

\[
u(x, t) = \frac{1}{2} (0 + 0) + \frac{1}{2} \int_{x-t}^{x+t} 1 \cdot \, d\xi = t
\]

In region L1, let \(A = (x, t) \) in L1 and thus \(B = (0, 0 - x) \), \(C = \left(\frac{t-x}{2}, \frac{-x}{2}\right) \) and \(D = \left(\frac{x+t}{2}, \frac{x+t}{2}\right) \). Using the parallelogram rule we find that \(u(x, t) = u(D_{C1}) - u(C_{C1}) = \frac{x+t}{2} - \frac{t-x}{2} = x \).

In region R1, let \(A = (x, t) \) in R1 and thus \(B = \left(\frac{\pi-x-t}{2}, \frac{-x+t}{2}\right) \), \(C = \left(\frac{3\pi-x-t}{2}, \frac{x+t-\pi}{2}\right) \) and \(D = \left(\pi, \frac{x+t-\pi}{2}\right) \). Using the parallelogram rule we find that \(u(x, t) = u(B_{C1}) - u(C_{C1}) = \frac{\pi-x+t}{2} - \frac{x+t-\pi}{2} = \pi - x \).
In region C2, let \(A = (x, t) \) in C2 and thus \(B = \left(\frac{\pi + x - t}{2}, \frac{\pi - x + t}{2} \right) \), \(C = \left(\frac{\pi}{2}, \frac{\pi}{2} \right) \) and \(D = \left(\frac{x + t}{2}, \frac{x + t}{2} \right) \).

Using the parallelogram rule we find that \(u(x, t) = u(B_{L1}) + u(D_{R1}) - u(C_{C1}) = \frac{\pi + x - t}{2} + \pi - \frac{x + t}{2} = \pi - t. \)

Generally, we can find that in region \(Ci \): let \(A = (x_i, t_i) \) and thus \(B = \left(\frac{(i-1)\pi + x_i - t_i}{2}, \frac{(i-1)\pi - x_i + t_i}{2} \right) \), \(C = \left(\frac{\pi}{2}, \frac{(2i-3)\pi}{2} \right) \) and \(D = \left(\frac{x_i + t_i - (i-2)\pi}{2}, \frac{x_i + t_i + (i-2)\pi}{2} \right) \). Using the parallelogram, we find that \(u(x, t) = u(B_{L_{i-1}}) + u(D_{R_{i-1}}) - u(C_{C_{i-1}}) \) in region \(Li \), let \(A = (x_i, t_i) \) and thus \(B = (0, t_i - x_i) \), \(C = \left(-x_i + t_i - (i-1)\pi, t_i - x_i + (i-1)\pi \right) \) and \(D = \left(-x_i + t_i - (i-1)\pi, x_i + t_i + (i-1)\pi \right) \).

Using the parallelogram rule, we find that \(u(x, t) = u(D_{Cl}) - u(C_{Ci}) \) in region \(Ri \), let \(A = (x_i, t_i) \) and thus \(B = \left(\frac{\pi + x_i - t_i}{2}, \frac{\pi - x_i + t_i}{2} \right) \), \(C = \left(\frac{(i+2)\pi - x_i - t_i}{2}, \frac{(i+2)\pi + x_i + t_i}{2} \right) \) and \(D = (\pi, x_i + t_i - \pi) \). Using the parallelogram, we find that \(u(x, t) = u(B_{Ci}) - u(C_{Ci}) \).

Therefore, we find the general solution in the various regions is written as

\[
 u(x, t) = \begin{cases}
 (-1)^{i-1} (t - (i - 1)\pi), & \text{in Region } Ci \\
 (-1)^{i-1} x, & \text{in Region } Li \\
 (-1)^{i-1} (\pi - x), & \text{in Region } Ri
\end{cases}
\]

The line separating \(Ci \) from \(Li \) is \(x - t = -(i - 1)\pi \) \(\Rightarrow \) \(x = t - (i - 1)\pi. \) In region \(Ci \) the solution is \((-1)^{i-1} (t - (i - 1)\pi) \) and in region \(Li \) the solution is \((-1)^{i-1} x. \) Thus, we see that the solution is continuous if letting \(A \rightarrow D. \) Similarly, the line separating \(Ci \) from \(Ri \) is \(x + t = i\pi \) \(\Rightarrow \) \(\pi - x = t - (i - 1)\pi. \) In region \(Ci \) the solution is \((-1)^{i-1} (t - (i - 1)\pi) \) and in region \(Ri \) the solution is \((-1)^{i-1} (\pi - x) \). Thus, we see that the solution is continuous if letting \(A \rightarrow B. \)

The line separating \(Ci \) from \(Li - 1 \) is \(x + t = (i - 1)\pi \) \(\Rightarrow \) \(-x = t - (i - 1)\pi. \) In region \(Ci \) the solution is \((-1)^{i-1} (t - (i - 1)\pi) \) and in region \(Li - 1 \) the solution is \((-1)^{i-1} (x - \pi). \) Thus, we see that the solution is continuous between \(Ci \) and \(Li - 1. \)

Similarly, the line separating \(Ci \) from \(Ri - 1 \) is \(x - t = (2 - i)\pi \) \(\Rightarrow \) \(x - \pi = t - (i - 1)\pi. \) In region \(Ci \) the solution is \((-1)^{i-1} (t - (i - 1)\pi) \) and in region \(Ri - 1 \) the solution is \((-1)^{i-1} (x - \pi). \) Thus, we see that the solution is continuous between \(Ci \) and \(Ri - 1. \)

In addition, we can see in region \(Li, \) if letting \(x \rightarrow 0, u(x, t) \rightarrow 0 \) and in region \(Ri, \) if letting \(x \rightarrow \pi, u(x, t) \rightarrow 0. \) If region \(C1, \) since \(u(x, t) = t, \) if letting \(t \rightarrow 0, u(x, t) \rightarrow 0. \)

Therefore, the whole solution is \(C \left([0, \pi] \times (0, +\infty) \right). \) However, it is easily seen that the derivatives across region boundaries are not continuous which implies \(u(x, t) \notin C^{1}. \)

3. (P82 #4) Consider the initial boundary value problem

\[
\text{Page 3 of 5}
\]
\[
\begin{cases}
 u_{tt} - c^2 u_{xx} = 0 & \text{for } x, t > 0 \\
 u(x, 0) = g(x), \ u_t(x, 0) = h(x) & \text{for } x > 0 \\
 u(0, t) = 0 \quad & \text{for } t \geq 0,
\end{cases}
\]

Where \(g(0) = 0 = h(0) \). If we extend \(g \) and \(h \) as odd functions on \(-\infty < x < +\infty\), show that d’Alembert’s formula (6) gives the solution.

Solution: by extending \(g \) and \(h \) as odd functions on \(-\infty < x < +\infty\), we try to convert the initial boundary value problem to an initial value problem.

\[
\begin{cases}
 u_{tt} - c^2 u_{xx} = 0 & \text{for } x \in R, t > 0 \\
 u(x, 0) = G(x) \quad & \text{for } x \in R \\
 u_t(x, 0) = H(x) & \text{for } x \in R
\end{cases}
\]

Where, \(G(x) \) and \(H(x) \) are odd functions defined as

\[
G(x) = \begin{cases}
 g(x), & x > 0 \\
 -g(-x), & x < 0
\end{cases}
\]

\[
H(x) = \begin{cases}
 h(x), & x > 0 \\
 -h(-x), & x < 0
\end{cases}
\]

Using d’Alembert’s formula, we obtain the solution of the initial value problem as

\[
u(x, t) = \frac{1}{2} (G(x - ct) + G(x + ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} H(\xi) d\xi
\]

To show this solution also solves the original initial boundary value problem, we note that

1) Since \(u(x, t) \) satisfies \(u_{tt} - c^2 u_{xx} = 0 \) for \(x \in R, t > 0 \), thus it also satisfies \(u_{tt} - c^2 u_{xx} = 0 \) for \(x, t > 0 \).

2) \(u(x, 0) = G(x) = g(x) \) for \(x > 0 \) and \(u_t(x, 0) = H(x) = h(x) \) for \(x > 0 \) thus the initial values are satisfied.

3) Lastly, we test the boundary value:

\[
u(0, t) = \frac{1}{2} (G(-ct) + G(ct)) + \frac{1}{2c} \int_{-ct}^{ct} H(\xi) d\xi
\]

\[
= \frac{1}{2} (-g(ct) + g(ct)) + \frac{1}{2c} \left(\int_{-ct}^{0} H(\xi) d\xi + \int_{0}^{ct} H(\xi) d\xi \right)
\]

\[
= \frac{1}{2c} \left(\int_{0}^{ct} h(\xi) d\xi - \int_{ct}^{0} h(\xi) d\xi \right) = 0
\]

Thus, we have shown that the d’Alembert’s formula gives the solution.

4. (P90 #1) (a) If \(F(s) \) is a \(C^2 \)-function of the one-variable \(s \), find a condition on the vector \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) so that \(u(x_1, x_2, x_3, t) = F(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 - t) \) is a solution of (26). (Such solutions are called plane waves and are constant on the planes \(\alpha \cdot x - t = \text{constant} \).)

(b) Find the relationship which must hold between the initial data \(g(x) \) and \(h(x) \) for a plane wave solution.

(c) Find all plane wave solutions of (26) with the initial condition \(u(x_1, x_2, x_3, 0) = x_1 - x_2 + 1 \).

Solution: (a) since \(u(x_1, x_2, x_3, t) = F(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 - t) \), we have

\[
u_{tt} = F''(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 - t)
\]

\[
u_{x_i x_i} = \alpha_i^2 \cdot F''(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 - t) \quad i = 1, 2, 3
\]

Due to (26) \(u_{tt} - c^2 \Delta u = 0 \), we have that \(1 - c^2 (\alpha_1^2 + \alpha_2^2 + \alpha_3^2) = 0 \) which implies the
condition is \(\|a\|_2 = 1/|c| \).

(b) \(g(x) = u(x,0) = F(\alpha \cdot x) \) and \(h(x) = u_t(x,0) = -F'(\alpha \cdot x) \). Also, we have

\[
\frac{\partial g(x)}{\partial x_i} = \alpha_i F'(\alpha \cdot x) \quad i = 1,2,3
\]

Which implies that \(\nabla g(x) = -h(x)\alpha \).

(c) Since \(g(x) = x_1 - x_2 + 1 \), we have

\[
\nabla g(x) = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = -h(x) \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \quad \Rightarrow \quad \alpha = \frac{1}{h(x)} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}
\]

From (a), we see that \(\alpha^2 = 1/c^2 \) and thus \(2/h^2(x) = 1/c^2 \) which implies \(h(x) = \pm \sqrt{2}c \). Using Kirchhoff’s formula, we have

\[
u(x,t) = \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{|\xi|=1} g(x + ct\xi)dS_\xi \right) + \frac{t}{4\pi} \int_{|\xi|=1} h(x + ct\xi)dS_\xi
\]

\[
\quad = \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{|\xi|=1} (x_1 + ct\xi_1 - x_2 - ct\xi_2 + 1)dS_\xi \right) + \frac{t}{4\pi} \int_{|\xi|=1} (\pm \sqrt{2}c)dS_\xi
\]

\[
\quad = (x_1 - x_2 + 1) + \frac{1}{4\pi} \frac{\partial}{\partial t} \left(ct^2 \int_{|\xi|=1} (\xi_1 - \xi_2)dS_\xi \right) \pm \sqrt{2}ct
\]

\[
\quad = 1 + x_1 - x_2 \pm \sqrt{2}ct
\]

5. (P90 #3) Use Duhamel’s principle to find the solution of the nonhomogeneous wave equation for three space dimensions \(u_{tt} - c^2 \Delta u = f(x,t) \) with initial conditions \(u(x,0) = 0 = u_t(x,0) \). What regularity in \(f(x,t) \) is required for the solution \(u \) to be \(C^2 \)?

Solution: we consider the nonhomogeneous wave equation with homogeneous initial conditions:

\[
\begin{cases}
u_{tt} - c^2 \Delta \nu = f(x,t) \\ \nu(x,0) = \nu_t(x,0) = 0
\end{cases}
\]

By Duhamel principle, we reduce the problem to the special homogeneous equations with nonhomogeneous initial conditions:

\[
\begin{cases} U_{tt} - c^2 \Delta U = 0 & \text{for } x \in \mathbb{R}, t > s \geq 0 \\ U(x,0,s) = 0 & \text{for } x \in \mathbb{R}, s \geq 0 \\ U_t(x,0,s) = f(x,s) & \text{for } x \in \mathbb{R}, s \geq 0
\end{cases}
\]

Then

\[
u(x,t) = \int_0^t U(x,t-s,s)ds
\]

solves the nonhomogeneous wave equation. In the three space dimensions, using Kirchhoff’s formula, we know that

\[
U(x,t,s) = \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{|\xi|=1} 0 \cdot dS_\xi \right) + \frac{t}{4\pi} \int_{|\xi|=1} f(x + ct\xi,s) \cdot dS_\xi
\]= \frac{t}{4\pi} \int_{|\xi|=1} f(x + ct\xi,s) \cdot dS_\xi
\]

Hence, we have that

\[
u(x,t) = \int_0^t U(x,t-s,s)ds = \int_0^t \left(\frac{t-s}{4\pi} \int_{|\xi|=1} f(x + c(t-s)\xi,s) \cdot dS_\xi \right)ds
\]

\[
= \frac{1}{4\pi} \int_0^t \int_{|\xi|=1} (t-s)f(x + c(t-s)\xi,s) \cdot dS_\xi ds
\]

So, we will need \(f(x,t) \) to be \(C^2 \) in \(x \) and \(C^0 \) in \(t \) for the solution \(u \) to be \(C^2 \).